【題目】已知各項(xiàng)均為正數(shù)數(shù)列
的前
項(xiàng)和
滿足
.
(1)求數(shù)列
的通項(xiàng)公式;;
(2)若數(shù)列
滿足
,求數(shù)列
的前
項(xiàng)和
.
【答案】(1)
;(2)
.
【解析】試題分析:(1)由
得
,∴
,于是可得,
;(2)根據(jù)(1)求得
,
∴
,利用裂項(xiàng)相消法可求得數(shù)列
的前
項(xiàng)和
.
試題解析:(1)∵
,
∴
.
又?jǐn)?shù)列
各項(xiàng)均為正數(shù),
∴
,∴
,∴
.
當(dāng)
時(shí),
;
當(dāng)
時(shí),
,
又∵
也滿足上式,∴
.
(2)據(jù)(1)求解,得
,
∴
.
∴數(shù)列
的前
項(xiàng)和![]()
.
【方法點(diǎn)晴】本題主要考查等差數(shù)列的通項(xiàng)以及裂項(xiàng)相消法求數(shù)列的和,屬于中檔題. 裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見(jiàn)的裂項(xiàng)技巧:(1)
;(2)
; (3)
;(4)
;此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
是奇函數(shù),
是偶函數(shù)
,且其中
.
(1)求
和
的表達(dá)式,并求函數(shù)
的值域
(2)若關(guān)于
的方程
在區(qū)間
內(nèi)恰有兩個(gè)不等實(shí)根,求常數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將直線2x-y+λ=0沿x軸向左平移1個(gè)單位,所得直線與圓x2+y2+2x-4y=0相切,則實(shí)數(shù)λ的值為( )
A.-3或7B.-2或8
C.0或10D.1或11
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列
的前
項(xiàng)和為
,且
(
是常數(shù),
),
.
(1)求
的值及數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,數(shù)列
的前
項(xiàng)和為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),
為橢圓的一個(gè)焦點(diǎn),離心率
,過(guò)
作兩條互相垂直的直線
,
,
與橢圓交于
兩點(diǎn),
與橢圓交于
兩點(diǎn),且
四點(diǎn)在橢圓上逆時(shí)針?lè)植?
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形
面積的最大值與最小值的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,已知點(diǎn)A(1,0)和點(diǎn)B(﹣1,0),
,且∠AOC=x,其中O為坐標(biāo)原點(diǎn).
![]()
(1)若x=
,設(shè)點(diǎn)D為線段OA上的動(dòng)點(diǎn),求
的最小值;
(2)若
R,求
的最大值及對(duì)應(yīng)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:
的右準(zhǔn)線方程為
,右頂點(diǎn)為
.
![]()
求橢圓C的方程;
若M,N是橢圓C上不同于A的兩點(diǎn),點(diǎn)P是線段MN的中點(diǎn).
如圖1,若
為等腰直角三角形且直角頂點(diǎn)P在x軸上方,求直線MN的方程;
如圖2所示,點(diǎn)Q是線段NA的中點(diǎn),若
且
的角平分線與x軸垂直,求直線AM的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩支球隊(duì)進(jìn)行總決賽,比賽采用七場(chǎng)四勝制,即若有一隊(duì)先勝四場(chǎng),則此隊(duì)為總冠軍,比賽就此結(jié)束.因兩隊(duì)實(shí)力相當(dāng),每場(chǎng)比賽兩隊(duì)獲勝的可能性均為
.據(jù)以往資料統(tǒng)計(jì),第一場(chǎng)比賽可獲得門票收入40萬(wàn)元,以后每場(chǎng)比賽門票收入比上一場(chǎng)增加10萬(wàn)元.
(I)求總決賽中獲得門票總收入恰好為300萬(wàn)元的概率;
(II)設(shè)總決賽中獲得門票總收入為X,求X的均值E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線
恒過(guò)定點(diǎn)
.
(Ⅰ)若直線
經(jīng)過(guò)點(diǎn)
且與直線
垂直,求直線
的方程;
(Ⅱ)若直線
經(jīng)過(guò)點(diǎn)
且坐標(biāo)原點(diǎn)到直線
的距離等于3,求直線
的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com