欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
15.用二分法求lnx+2x-6=0的近似解時,能確定為解所在的區(qū)間是( 。
A.(0,1)B.(0,2)C.(1,2)D.(2,3)

分析 根據單調性求解f(1)=-4,f(2)=ln2-2<0,f(3)=ln3>0,據函數的零點判斷方法可得:零點在(2,3)內.

解答 解:令函數f(x)=lnx+2x-6,
可判斷在(0,+∞)上單調遞增,
∴f(1)=-4,f(2)=ln2-2<0,f(3)=ln3>0,
∴根據函數的零點判斷方法可得:零點在(2,3)內,
方程lnx+2x-6=0的近似解:在(2,3)內.
故選:D.

點評 本題考查了函數的零點,與方程的根的關系,根據函數的單調性判斷分析,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

16.已知集合A={x|x2-3x+2=0},B={x|ax-2=0},C={x|x2-mx+2=0}.
(1)若B⊆A,求實數a構成的集合;
(2)若A∩C=C,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.圓O的直徑為BC,點A是圓周上異于B,C的一點,且|AB|•|AC|=1,若點P是圓O所在平面內的一點,且$\overrightarrow{AP}=\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{9\overrightarrow{AC}}{|\overrightarrow{AC}|}$,則$\overrightarrow{PB}•\overrightarrow{PC}$的最大值為( 。
A.2$\sqrt{3}$B.9C.76D.81

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F,橢圓C與x軸正半軸交于A點,與y軸正半軸交于B(0,2),且$\overrightarrow{BF}$•$\overrightarrow{BA}$=4$\sqrt{2}$+4,過點D(4,0)作直線l交橢圓于不同兩點P,Q,則直線l的斜率的取值范圍是(  )
A.-1<k<$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$<k<$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{2}}{2}$<k<1D.-1<k<1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.設F1,F2分別是短軸長為6的橢圓E:$\frac{x^2}{a^2}$+${\frac{y}{b^2}^2}$=1(a>b>0)的左、右焦點,過點F1的直線交橢圓E于A,B兩點,且△ABF2的周長為16.
(1)求橢圓的標準方程;
(2)點P為E上一點,若PF1=3,求PF2的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為2$\sqrt{6}$,橢圓C上任意一點到橢圓兩個焦點的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l:y=kx-2與橢圓C交于A,B兩點,點P(0,1),且|PA|=|PB|,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長為8,且離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)過橢圓C的左焦點F1的直線l交橢圓于M、N兩點,且該橢圓上存在點P,使得四邊形MONP(圖形上的字母按此順序排列)恰好為平行四邊形,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知函數f(x)=ax2-2ax+3a-4在區(qū)間(-1,1)上有一個零點.
(1)求實數a的取值范圍;
(2)若a=1,用二分法求f(x)=0在區(qū)間(-1,1)上的根.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知函數y=x+$\frac{t}{x}$有如下性質:如果常數t>0,那么該函數在$(0,\sqrt{t}]$上是減函數,在$[\sqrt{t},+∞)$上是增函數.
(1)已知f(x)=$\frac{{{x^2}-2x-4}}{x+2}$,x∈[-1,1],利用上述性質,求函數f(x)的單調區(qū)間和值域;
(2)對于(1)中的函數f(x)和函數g(x)=-x-2a,若對任意x1∈[-1,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數a的值.

查看答案和解析>>

同步練習冊答案