分析 (1)利用數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式即可得出.
(2)由(1)知${b_n}=\frac{1}{{n({n+1})}}=\frac{1}{n}-\frac{1}{n+1}$,利用裂項(xiàng)求和方法即可得出.
解答 解:(1)由已知${S_n}=\frac{3}{2}{a_n}-\frac{1}{2}$①,
得${S_{n-1}}=\frac{3}{2}{a_{n-1}}-\frac{1}{2}$,(n≥2)②,
①-②得${a_n}=\frac{3}{2}{a_n}-\frac{3}{2}{a_{n-1}}$,即an=3an-1(n≥2),
又a1=1,所以數(shù)列{an}是以1為首項(xiàng),3為公比的等比數(shù)列,即${a_n}={3^{n-1}}$.
(2)由(1)知${b_n}=\frac{1}{{n({n+1})}}=\frac{1}{n}-\frac{1}{n+1}$,
∴${T_n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}=\frac{n}{n+1}$,
∴${T_n}=\frac{n}{n+1}$.
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式、裂項(xiàng)求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 10 | B. | 15 | C. | 20 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①④ | B. | ②④ | C. | ①③④ | D. | ①③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 點(diǎn)擊量 | [0,1000] | (1000,3000] | (3000,+∞) |
| 節(jié)數(shù) | 6 | 18 | 12 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com