欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.已知函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x-1.
(1)求f($\frac{π}{6}$)的值;
(2)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.

分析 (1)直接代入計(jì)算;(2)利用二倍角公式與和差公式對(duì)f(x)進(jìn)行化簡,結(jié)合正弦函數(shù)的單調(diào)性列出不等式解出.

解答 解:(1)f($\frac{π}{6}$)=2cos2($\frac{π}{6}$)+$\sqrt{3}$sin$\frac{π}{3}$-1=2×($\frac{\sqrt{3}}{2}$)2+$\sqrt{3}$×$\frac{\sqrt{3}}{2}$-1=2.
(2)f(x)=cos2x+$\sqrt{3}$sin2x=2sin(2x+$\frac{π}{6}$).
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{2}$=π.
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ.解得-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ.
∴f(x)的單調(diào)增區(qū)間是[-$\frac{π}{3}$+kπ,$\frac{π}{6}$+kπ],k∈Z.

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡求值與性質(zhì).是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,在長方體ABCD-A1B1C1D1中,AD=1,AB=AA1=2,N、M分別是AB、C1D的中點(diǎn).
(1)求證:NM∥平面A1ADD1;
(2)求證:NM⊥平面A1B1M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.試求下列各正弦波的周期、頻率和初相角.
(1)3sin314t;
(2)6cos(100πt-45°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b)的兩個(gè)焦點(diǎn)F1,F(xiàn)2,點(diǎn)P在橢圓C上,且PF1⊥PF2,|PF1|=2,|PF2|=4,則橢圓C的方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在三棱錐ABC-A1B1C1中,∠BAC=90°,其正視圖和側(cè)視圖都是邊長為1的正方形,俯視圖是直角邊的長為1的等腰直角三角形,設(shè)點(diǎn)M,N,P分別是棱AB,BC,B1C1的中點(diǎn).
(1)證明:A1B1⊥平面PMN;
(2)求三棱錐P-A1MN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知sin(3π-α)=-2sin($\frac{π}{2}$+α),則sinα•cosα等于$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,既是偶函數(shù),周期為π的是( 。
A.y=sin|x|B.y=|tanx|C.y=|sin2x|D.y=cos(2x+$\frac{x}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知cos($\frac{3π}{2}$-φ)=$\frac{3}{5}$,且|φ|<$\frac{π}{2}$,則tanφ=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓O:x2+y2=4.
(Ⅰ)直線l1過點(diǎn)P(1,2),且與圓O于A、B兩點(diǎn),若AB=2$\sqrt{3}$,求直線l1的方程;
(2)設(shè)圓O與x軸相交于P,Q兩點(diǎn),M是圓O上異于P,Q的任意一點(diǎn),過點(diǎn)A(4,0)且與x軸垂直的直線l2,直線PM交直線l2于點(diǎn)P,直線OM交直線l2于點(diǎn)Q,以PQ為直徑的圓總過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案