分析 (Ⅰ)設(shè)橢圓方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$由已知得$b=1,\frac{c}{a}=\frac{{\sqrt{6}}}{3}$,又a2=b2+c2,∴a2=3,b2=1,
(Ⅱ) 設(shè)A(x1,y1),用x1,y1表示|AM|,再利用$\frac{x_1^2}{3}+y_1^2=1$,求出|AM|的最小值.
(Ⅲ)假設(shè)x軸上存在定點(diǎn)P(m,0)滿足條件,B(x2,y2).當(dāng)直線L的斜率存在時(shí),設(shè)直線L方程為:y=k(x-1)由$\left\{\begin{array}{l}\frac{x^2}{3}+{y^2}=1\\ y=k(x-1)\end{array}\right.$消去y整理得,(1+3k2)x2-6k2x+3k2-3=0${x_1}+{x_2}=\frac{{6{k^2}}}{{1+3{k^2}}},{x_1}•{x_2}=\frac{{3{k^2}-3}}{{1+3{k^2}}}$,由∠MPA=∠MPB得kPA+kPB=0,即可.
解答 解:(Ⅰ)設(shè)橢圓方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$由已知得$b=1,\frac{c}{a}=\frac{{\sqrt{6}}}{3}$,
又a2=b2+c2,∴a2=3,b2=1,即橢圓方程為$\frac{x^2}{3}+{y^2}=1$…(2分)
(Ⅱ) 設(shè)A(x1,y1),
即$\frac{x_1^2}{3}+y_1^2=1$,$|AM|=\sqrt{{{({x_1}-1)}^2}+y_1^2}=\sqrt{x_1^2-2{x_1}+1+(1-\frac{x^2}{3})}=\sqrt{\frac{{2{x^2}}}{3}-2{x_1}+2}$
又$-\sqrt{3}≤x≤\sqrt{3}$,得$\frac{{2{x^2}}}{3}-2{x_1}+2=\frac{2}{3}{(x-\frac{3}{2})^2}+\frac{1}{2}≥\frac{1}{2}$
∴所以當(dāng)x1=時(shí),|AM|的最小值為$\frac{1}{2}$…6分
(Ⅲ)假設(shè)x軸上存在定點(diǎn)P(m,0)滿足條件,B(x2,y2).
當(dāng)直線L的斜率存在時(shí),設(shè)直線L方程為:y=k(x-1)
由$\left\{\begin{array}{l}\frac{x^2}{3}+{y^2}=1\\ y=k(x-1)\end{array}\right.$消去y整理得,(1+3k2)x2-6k2x+3k2-3=0${x_1}+{x_2}=\frac{{6{k^2}}}{{1+3{k^2}}},{x_1}•{x_2}=\frac{{3{k^2}-3}}{{1+3{k^2}}}$…(8分)
由∠MPA=∠MPB得kPA+kPB=0,即$\frac{{{x_1}-1}}{y_1}+\frac{{{x_2}-1}}{y_2}=0$,…(8分)
又y1=k(x1-1),y2=k(x2-1)即$\frac{{{x_1}-m}}{y_1}+\frac{{{x_2}-m}}{y_2}=\frac{{{x_1}-m}}{{k({x_1}-1)}}+\frac{{{x_2}-m}}{{k({x_2}-1)}}=\frac{{2{x_1}{x_2}-(m+1)({x_1}+{x_2})+2m}}{{{k^2}({x_1}-1)({x_2}-1)}}$=0.
$2×\frac{{3{k^2}-3}}{{1+3{k^2}}}-(m+1)\frac{{6{k^2}}}{{1+3{k^2}}}+2m=\frac{-6+2m}{{1+3{k^2}}}=0$,
即m=3,P(3,0)
當(dāng)直線L的斜率不存在時(shí),也滿足條件.
∴定點(diǎn)P坐標(biāo)為(3,0)…(12分)
點(diǎn)評(píng) 本題考查了橢圓的方程,直線與橢圓的位置關(guān)系、范圍問(wèn)題、定點(diǎn)問(wèn)題,轉(zhuǎn)化思想是解題關(guān)鍵,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2$\sqrt{34}$ | B. | $\frac{25}{2}$ | C. | 10 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ±2 | B. | -2 | C. | ±4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5 | B. | 6 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$ | B. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$ | C. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$ | D. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$-$\frac{1}{4}$$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | i | B. | -i | C. | 1+i | D. | 1-i |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com