分析 (1)由題意知an2為首項(xiàng)為1,公差為1的等差數(shù)列,由此可知an=$\sqrt{2n-1}$,
(2)寫出數(shù)列{bn}的通項(xiàng)公式,bn=$\frac{n}{{2}^{n-1}}-\frac{1}{{2}^{n}}$,{bn}是由等差數(shù)列與等比數(shù)列積的形式,采用乘公比,錯(cuò)位相減法,即可求得前n項(xiàng)和Tn.
解答 解:(1)a1=1,a${\;}_{n+1}^{2}$-${a}_{n}^{2}$=2(n∈N*),
∴{${a}_{n}^{2}$}是以1為首項(xiàng),以2為公差的等差數(shù)列,
∴${a}_{n}^{2}$=2n-1n∈N*),
∴an=$\sqrt{2n-1}$,
(2)bn=$\frac{{a}_{n}^{2}}{{2}^{n}}$=$\frac{2n-1}{{2}^{n}}$=$\frac{n}{{2}^{n-1}}-\frac{1}{{2}^{n}}$,
數(shù)列{bn}的前n項(xiàng)和Tn,Tn=b1+b2+b3+…b3,
∴Tn=($1+\frac{2}{2}+\frac{3}{{2}^{2}}+\frac{4}{{2}^{3}}+…\frac{n}{{2}^{n-1}}$)-($\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$),
$\frac{1}{2}$Tn=($\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}+…+\frac{n}{{2}^{n}}$)-$\frac{1}{2}$($\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$),
兩式相減得:$\frac{1}{2}$Tn=(1+$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n-1}}$)-$\frac{n}{{2}^{n}}$-$\frac{1}{2}$($\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$),
整理得:Tn=3-$\frac{2n+3}{{2}^{n}}$.
∴數(shù)列{bn}的前n項(xiàng)和Tn=3-$\frac{2n+3}{{2}^{n}}$.
點(diǎn)評(píng) 本題考查求數(shù)列的通項(xiàng)公式和采用乘以公比錯(cuò)位相減法求前n項(xiàng)和,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 60° | B. | 120° | C. | 45° | D. | 135° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -54$+\frac{9π}{2}$ | B. | -54+9π | C. | 54$+\frac{9π}{2}$ | D. | 54+9π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com