【題目】已知曲線Cx2﹣y2=1及直線l:y=kx﹣1.
(1)若l與C左支交于兩個不同的交點,求實數(shù)k的取值范圍;
(2)若l與C交于A、B兩點,O是坐標(biāo)原點,且△AOB的面積為
,求實數(shù)k的值.
【答案】
(1)解:由
消去y,得(1﹣k2)x2+2kx﹣2=0.
∵l與C左支交于兩個不同的交點
∴
且 x1+x2=﹣
<0,x1x2=﹣
>0
∴k的取值范圍為 (﹣
,﹣1)
(2)解:設(shè)A(x1,y1)、B(x2,y2),
由(1)得 x1+x2=﹣
,x1x2=﹣
.
又l過點D(0,﹣1),
∴S△OAB=
|x1﹣x2|=
.
∴(x1﹣x2)2=(2
)2,即(﹣
)2+
=8.
∴k=0或k=± ![]()
【解析】(1)將直線與雙曲線聯(lián)立,利用l與C左支交于兩個不同的交點,結(jié)合韋達定理,建立不等式,從而可求實數(shù)k的取值范圍;(2)利用韋達定理,結(jié)合△AOB的面積為
,可建立k的方程,從而可求實數(shù)k的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(m-1,2),B(1,1),C(3,m2-m-1).
(1)若A,B,C三點共線,求實數(shù)m的值;
(2)若AB⊥BC,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過雙曲線C:
=1(a>0,b>0)的中心的直線交雙曲線于點A,B,在雙曲線C上任取與點A,B不重合的點P,記直線PA,PB,AB的斜率分別為k1 , k2 , k,若k1k2>k恒成立,則離心率e的取值范圍為( )
A.1<e< ![]()
B.1<e≤ ![]()
C.e> ![]()
D.e≥ ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,點E在CC1上且C1E=3EC ![]()
(1)證明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方體ABCD﹣A1B1C1D1中,E,M,N分別是BC,AE,CD1的中點,AD=AA1=a,AB=2a.求證:MN∥平面ADD1A1 . ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
在區(qū)間
上的最大值;
(2)若
是函數(shù)
圖像上不同的三點,且
,試判斷
與
之間的大小關(guān)系,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標(biāo)軸,l與C有兩個交點A,B,線段AB的中點為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過點(
,m),延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
的圖像在
處的切線與
軸平行,求
的極值;
(2)若函數(shù)
在
內(nèi)單調(diào)遞增,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓x2+y2-4ax+2ay+20a-20=0.
(1)求證:對任意實數(shù)a,該圓恒過一定點;
(2)若該圓與圓x2+y2=4相切,求a的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com