【題目】對某校高三年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取
名學生作為樣本,得到這
名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率統(tǒng)計表和頻率分布直方圖如下:
![]()
分組 | 頻數(shù) | 頻率 |
| 15 | 0.30 |
| 29 |
|
|
|
|
| 2 |
|
合計 |
| 1 |
(1)求出表中
,
及圖中
的值;
(2)若該校高三學生人數(shù)有500人,試估計該校高三學生參加社區(qū)服務的次數(shù)在區(qū)間
內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數(shù)在區(qū)間
內(nèi)的概率.
【答案】(1)
,
,
;(2)150;(3)
.
【解析】
(1)根據(jù)頻率,頻數(shù)和樣本容量之間的關(guān)系即頻率等于頻數(shù)除以樣本容量,寫出算式,求出式子中的字母的值;
(2)該校高三學生有500人,分組
內(nèi)的頻率是030,可估計該校高三學生參加社區(qū)服務的次數(shù)在此區(qū)間內(nèi)的人數(shù);
(3)設(shè)在區(qū)間
內(nèi)的人為
,
,
,
,在區(qū)間
內(nèi)的人為
,
,寫出任選2人的所有基本事件,利用對立事件求得答案.
(1)由分組
內(nèi)的頻數(shù)是15,頻率是0.30知,
,∴
.
∵頻數(shù)之和為50,∴
,
,
.
∵
是對應分組
的頻率與組距的商,∴
;
故
,
,
;
(2)因為該校高三學生有500人,分組
內(nèi)的頻率是0.30,
∴估計該校高三學生參加社區(qū)服務的次數(shù)在此區(qū)間內(nèi)的人數(shù)為150人.
(3)這個樣本參加社區(qū)服務的次數(shù)不少于20次的學生共有
人,
設(shè)在區(qū)間
內(nèi)的人為
,
,
,
,在區(qū)間
內(nèi)的人為
,
.
則任選2人共有
,
,
,
,
,
,
,
,
,
,
,
,
,
,
15種情況,而兩人都在
內(nèi)只能是
一種,
∴所求概率為
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當
時,求函數(shù)
的極值;
(Ⅱ)若
,且方程
在區(qū)間
內(nèi)有解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學餐飲中心為了了解新生的飲食習慣,在全校一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜食 | 不喜歡甜食 | 合計 | |
南方學生 | 60 | 20 | 80 |
北方學生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
附:![]()
| 0.10 | 0.05 | 0.01 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
(2)已知在被調(diào)查的北方學生中有5名數(shù)學系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究一種昆蟲的產(chǎn)卵數(shù)
和溫度
是否有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)列于下表中,并作出了如圖的散點圖.
![]()
溫度 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
產(chǎn)卵數(shù) | 6 | 10 | 22 | 26 | 64 | 118 | 310 |
|
|
|
|
|
|
|
26 | 79.4 | 3.58 | 112 | 11.6 | 2340 | 35.72 |
其中
.
(1)根據(jù)散點圖判斷,
與
哪一個更適宜作為該昆蟲的產(chǎn)卵數(shù)
與溫度
的回歸方程類型?(給出判斷即可,不必說明理由).
(2)根據(jù)表中數(shù)據(jù),建立
關(guān)于
的回歸方程;(保留兩位有效數(shù)字)
(3)根據(jù)
關(guān)于
的回歸方程,估計溫度為33℃時的產(chǎn)卵數(shù).
(參考數(shù)據(jù):
)
附:對于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘估計分別為
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)當
(
為自然對數(shù)的底數(shù))時,求
的最小值;
(2)討論函數(shù)
零點的個數(shù);
(3)若對任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了了解學生使用手機的情況,分別在高一和高二兩個年級各隨機抽取了100名學生進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學生日均使用手機時間的頻數(shù)分布表和頻率分布直方圖,將使用手機時間不低于80分鐘的學生稱為“手機迷”.
![]()
![]()
(I)將頻率視為概率,估計哪個年級的學生是“手機迷”的概率大?請說明理由.
(II)在高二的抽查中,已知隨機抽到的女生共有55名,其中10名為“手機迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認為“手機迷”與性別有關(guān)?
非手機迷 | 手機迷 | 合計 | |
男 | |||
女 | |||
合計 |
附:隨機變量
(其中
為樣本總量).
參考數(shù)據(jù) |
| 0.15 | 0.10 | 0.05 | 0.025 |
| span>2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)
是等比數(shù)列的公比大于
,其前
項和為
,
是等差數(shù)列,已知
,
,
,
.
(1)求
,
的通項公式
(2)設(shè)
,數(shù)列
的前
項和為
,求
;
(3)設(shè)
,其中
,求![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近期,西安公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,
表示活動推出的天數(shù),
表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表下所示:
![]()
根據(jù)以上數(shù)據(jù),繪制了散點圖.
![]()
(1)根據(jù)散點圖判斷,在推廣期內(nèi),
與
(
均為大于零的常數(shù)),哪一個適宜作為掃碼支付的人次
關(guān)于活動推出天數(shù)
的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立
與
的回歸方程,并預測活動推出第8天使用掃碼支付的人次;
(3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如下表:
![]()
西安公交六公司車隊為緩解周邊居民出行壓力,以
萬元的單價購進了一批新車,根據(jù)以往的經(jīng)驗可知,每輛車每個月的運營成本約為
萬元.已知該線路公交車票價為
元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受
折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客中有
的概率享受
折優(yōu)惠,有
的概率享受
折優(yōu)惠,有
的概率享受
折優(yōu)惠.預計該車隊每輛車每個月有
萬人次乘車,根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費標準,假設(shè)這批車需要
(
)年才能開始盈利,求
的值.
參考數(shù)據(jù):
|
|
|
|
|
|
|
|
|
|
其中其中
,
,
參考公式:對于一組數(shù)據(jù)
,
,
,
,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱
中,
側(cè)面
,已知
,
,
,點
是棱
的中點.
![]()
(1)求證:
平面
;
(2)求二面角
的余弦值;
(3)在棱
上是否存在一點
,使得
與平面
所成角的正弦值為
,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com