設(shè)數(shù)列
的前
項和為
,
,
,
,
.
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)求數(shù)列
的前
項和
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知首項為
的等比數(shù)列
的前n項和為
, 且
成等差數(shù)列.
(Ⅰ) 求數(shù)列
的通項公式;
(Ⅱ) 證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為零的等差數(shù)列
的前四項和為10,且
成等比數(shù)列
(1)求通項公式
(2)設(shè)
,求數(shù)列
的前
項和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于無窮數(shù)列
和函數(shù)
,若
,則稱
是數(shù)列
的母函數(shù).
(Ⅰ)定義在
上的函數(shù)
滿足:對任意
,都有
,且
;又?jǐn)?shù)列
滿足:
.
求證:(1)
是數(shù)列
的母函數(shù);
(2)求數(shù)列
的前項
和
.
(Ⅱ)已知
是數(shù)列
的母函數(shù),且
.若數(shù)列
的前
項和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項數(shù)列
的前
項和為
,且
.
(1)求
的值及數(shù)列
的通項公式;
(2)求證:![]()
;
(3)是否存在非零整數(shù)
,使不等式![]()
對一切
都成立?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
是公比
大于1的等比數(shù)列,
為數(shù)列
的前
項和,已知
,且
構(gòu)成等差數(shù)列.
(1)求數(shù)列
的通項公式;
(2)令
,求數(shù)列
的前
項和
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com