分析 (Ⅰ)先求出不等式|x-m|<1的解集,再由不等式|x-m|<1成立的充分不必要條件為$\frac{1}{3}$<x<$\frac{1}{2}$,確定m的取值范圍.
(Ⅱ)利用絕對值不等式,結(jié)合|x-3|+|x-5|<a的解集不是空集,求實數(shù)a的取值范圍.
解答 解:(Ⅰ)由不等式|x-m|<1得m-1<x<m+1,依題意{x|$\frac{1}{3}$<x<$\frac{1}{2}$}⊆{x|m-1<x<m+1},則$\left\{\begin{array}{l}{m-1≤\frac{1}{3}}\\{m+1≥\frac{1}{2}}\end{array}\right.$,
解得-$\frac{1}{2}≤m≤\frac{4}{3}$;5分
(Ⅱ)∵|x-3|+|x-5|≥|(x-3)-(x-5)|=2,
且|x-3|+|x-5|<a的解集不是空集,
∴a>2,即a的取值范圍是(2,+∞).10分.
點評 本題考查充分不必要條件的應(yīng)用,考查絕對值不等式,解題時要注意含絕對值不等式的解法和應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}<a<1$ | B. | a>1 | C. | $a<\frac{1}{3}$ | D. | a=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1(x≠0) | B. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1(x≠0) | C. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1(y≠0) | D. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1(y≠0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 10 | B. | -10 | C. | -20 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| ξ1 | 110 | 120 | 170 |
| P | m | 0.4 | n |
| X(次) | 0 | 1 | 2 |
| ξ2 | 41.2 | 117.6 | 204.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com