| A. | 5項(xiàng) | B. | 6項(xiàng) | C. | 7項(xiàng) | D. | 8項(xiàng) |
分析 由條件利用等差數(shù)列的定義性質(zhì),組合數(shù)的計(jì)算公式,求得r的值,可得n的值,從而根據(jù)二項(xiàng)式定理得出結(jié)論.
解答 解:設(shè)(1+x)n展開式中有連續(xù)四項(xiàng)分別為第r+1、r+2、r+3、r+4項(xiàng),
根據(jù)這四項(xiàng)的前三項(xiàng)二項(xiàng)式系數(shù)成等差數(shù)列,后兩項(xiàng)二項(xiàng)式系數(shù)相同,
可得${C}_{n}^{r}$+${C}_{n}^{r+2}$=2${C}_{n}^{r+1}$ ①,且${C}_{n}^{r+2}$=${C}_{n}^{r+3}$ ②.
由②可得 n=2r+5,代入①可得${C}_{2r+5}^{r}$+${C}_{2r+5}^{r+2}$=2${C}_{2r+5}^{r+1}$,
即$\frac{(2r+5)!}{r!•(r+5)!}$+$\frac{(2r+5)!}{(r+2)!•(r+3)!}$=2$\frac{(2r+5)!}{(r+1)!•(r+4)!}$,
求得r=1,∴n=7,故這個(gè)展開式共有8項(xiàng),
故選:D.
點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,等差數(shù)列的定義性質(zhì),組合數(shù)的計(jì)算公式,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 2$+\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{3\sqrt{3}}{2}$ | B. | -$\frac{2\sqrt{3}}{2}$ | C. | $\frac{2\sqrt{3}}{2}$ | D. | $\frac{3\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com