分析:(1)①當(dāng)n≥2時,an=Sn-Sn-1.當(dāng)n=1時,s1=a1=3.即可得出an.
②由數(shù)列{bn}滿足b1=-1,bn+1=bn+(2n-1)(n∈N*),利用“累加求和”即可得出.
(2)利用“錯位相減法”即可得出.
解答:解:(1)①∵
Sn=3n,∴當(dāng)n≥2時,
Sn-1=3n-1.
∴a
n=S
n-S
n-1=3
n-3
n-1=2•3
n-1.
當(dāng)n=1時,s
1=a
1=3.
∴
an=.
②∵數(shù)列{b
n}滿足
b1=-1,bn+1=bn+(2n-1)(n∈N*),
∴b
n=(b
n-b
n-1)+(b
n-1-b
n-2)+…+(b
2-b
1)+b
1=(2n-3)+(2n-5)+…+1-1
=
-1
=n
2-2n.
(2)當(dāng)n=1時,c
1=
=-3;
當(dāng)n≥2時,
cn==2(n-2)×3
n-1.
∴
cn=當(dāng)n≥2時,
Tn=-3+2×0×31+2×1×32+2×2×33+…+2×(n-2)×3n-1,
3T
n=-9+0+2×1×3
3+…+2×(n-3)3
n-1+2×(n-2)•3
n,
相減得
-2Tn=6+2×32+2×33+…+2×3n-1-2(n-2)×3n=
2×-2(n-2)×3n=3
n-3-2(n-2)×3
n,
∴T
n=
.
當(dāng)n=1時,上式也成立.
∴
Tn=.
點評:本題考查了利用“當(dāng)n=1時,a1=S1;當(dāng)n≥2時,an=Sn-Sn-1”得出an、“累加求和”、“錯位相減法”等基礎(chǔ)知識與基本技能方法,考查了計算能力,屬于難題.