| A. | y=cos2x-sin2x | B. | y=sin|x| | C. | y=sinx•cosx | D. | y=tan$\frac{x}{2}$ |
分析 化簡函數(shù)的解析式,再利用函數(shù)y=Asin(ωx+φ)、y=Acos(ωx+φ)的周期為$\frac{2π}{ω}$,可得結(jié)論.
解答 解:由于y=cos2x-sin2x=cos2x,為偶函數(shù),故排除A;
由于y=sin|x|為偶函數(shù),故排除B;
由于y=sinx•cosx=$\frac{1}{2}$sin2x,為奇函數(shù),且周期為$\frac{2π}{2}$=π,故滿足條件;
由于y=tan$\frac{x}{2}$的周期為$\frac{π}{\frac{1}{2}}$=2π,故排除D,
故選:C.
點評 本題主要考查二倍角公式,函數(shù)y=Asin(ωx+φ)的周期性,利用了函數(shù)y=Asin(ωx+φ)、y=Acos(ωx+φ)的周期為$\frac{2π}{ω}$,屬于基礎(chǔ)題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,0)∪($\frac{2}{3}$,+∞) | B. | ($\frac{2}{3}$,+∞) | C. | (-∞,-1)∪($\frac{2}{3}$,+∞) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 12 | B. | 29 | C. | 55 | D. | 47 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com