【題目】已知橢圓C:
(
)經(jīng)過點
,離心率為
,
,
分別為橢圓的左、右焦點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點
(
)在橢圓C上,求證;直線
與直線
關(guān)于直線l:
對稱.
【答案】(1)
(2)見解析
【解析】
(1)將點
代入橢圓方程,由離心率得到
關(guān)系,結(jié)合
,即可求解;
(2)若
,根據(jù)橢圓的對稱性即可得證,若
,只需證明
關(guān)于直線l的對稱點
在直線
上,根據(jù)點關(guān)于直線對稱關(guān)系求出
點坐標(biāo),而后證明
三點共線,即可證明結(jié)論.
(1)解:由題意知
可得
,
,
所以橢圓C的標(biāo)準(zhǔn)方程為
.
(2)證明:若
,則
,
此時直線
與直線
關(guān)于直線l對稱.
設(shè)
關(guān)于直線l的對稱點為
,
若
,則![]()
則
,
,
要證直線
與直線
關(guān)于直線l對稱,只需證Q,P,
三點共線,
即證
,即證
,
因為![]()
![]()
,
綜上,直線
與直線
關(guān)于直線l對稱.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是菱形,
,
是邊
的中點.平面
平面
,
,
.線段
上的點
滿足
.
![]()
(1)證明:
面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)若
,討論函數(shù)
的單調(diào)性;
(Ⅱ)若方程
沒有實數(shù)解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為直角梯形
,
,
平面
,
是棱
上的一點.
![]()
(1)證明:平面
平面
;
(2)若
,
是
的中點,
,
,且二面角
的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了調(diào)查小區(qū)成年居民對環(huán)境治理情況的滿意度(滿分按100計),隨機(jī)對20名六十歲以上的老人和20名十八歲以上六十歲以下的中青年進(jìn)行了不記名的問卷調(diào)查,得到了如下統(tǒng)計結(jié)果:
表1:六十歲以上的老人對環(huán)境治理情況的滿意度與頻數(shù)分布表
滿意度 |
|
|
|
|
|
人數(shù) | 1 | 5 | 6 | 5 | 3 |
表2:十八歲以上六十歲以下的中青年人對環(huán)境治理情況的滿意度與頻數(shù)分布表
滿意度 |
|
|
|
|
|
人數(shù) | 2 | 4 | 8 | 4 | 2 |
表3:
滿意度小于80 | 滿意度不小于80 | 合計 | |
六十歲以上老人人數(shù) | |||
十八歲以上六十歲以下的中青年人人數(shù) | |||
合計 |
(1)若該小區(qū)共有中青年人500人,試估計其中滿意度不少于80的人數(shù);
(2)完成表3的
列聯(lián)表,并回答能否有
的把握認(rèn)為“小區(qū)成年居民對環(huán)境治理情況的滿意度與年齡有關(guān)”?
(3)從表3的六十歲以上的老人“滿意度小于80”和“滿意度不小于80”的人數(shù)中用分層抽樣的方法抽取一個容量為5的樣本,再從中任取3人,求至少有兩人滿意小于80的概率.
附:
,其中
.
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2 016(a4-1)=1,(a2 013-1)3+2 016·(a2 013-1)=-1,則下列結(jié)論正確的是( )
A. S2 016=-2 016,a2 013>a4
B. S2 016=2 016,a2 013>a4
C. S2 016=-2 016,a2 013<a4
D. S2 016=2 016,a2 013<a4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:
(a>b>0)的離心率為
.且經(jīng)過點(1,
),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方).
![]()
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(t為參數(shù),a∈R).在以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為
.
(1)若點A(0,4)在直線l上,求直線l的極坐標(biāo)方程;
(2)已知a>0,若點P在直線l上,點Q在曲線C上,若|PQ|最小值
為,求a的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com