【題目】如圖1,在等腰梯形
中,
,
,
,
為
的中點.現(xiàn)分別沿
,
將
和
折起,點
折至點
,點
折至點
,使得平面
平面
,平面
平面
,連接
,如圖2.
![]()
(Ⅰ)若
、
分別為
、
的中點,求證:平面
平面
;
(Ⅱ)求多面體
的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)).以原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,且曲線
的極坐標(biāo)方程為
.
(1)寫出直線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)直線
上的定點
在曲線
外且其到
上的點的最短距離為
,試求點
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)討論
的單調(diào)性;
(2)定義:對于函數(shù)
,若存在
,使
成立,則稱
為函數(shù)
的不動點.如果函數(shù)
存在不動點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代名著《張丘建算經(jīng)》中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:問亭方幾何?”大致意思是:有一個四棱錐下底邊長為二丈,高三丈;現(xiàn)從上面截取一段,使之成為正四棱臺狀方亭,且四棱臺的上底邊長為六尺,則該正四棱臺的高為________尺,體積是_______立方尺(注:1丈=10尺).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機生產(chǎn)企業(yè)為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到單價
(單位:千元)與銷量
(單位:百件)的關(guān)系如下表所示:
單價 | 1 | 1.5 | 2 | 2.5 | 3 |
銷量 | 10 | 8 | 7 | 6 |
|
已知
.
(Ⅰ)若變量
,
具有線性相關(guān)關(guān)系,求產(chǎn)品銷量
(百件)關(guān)于試銷單價
(千元)的線性回歸方程
;
(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與
對應(yīng)的產(chǎn)品銷量的估計值
,當(dāng)銷售數(shù)據(jù)
對應(yīng)的殘差滿足
時,則稱
為一個“好數(shù)據(jù)”,現(xiàn)從5個銷售數(shù)據(jù)中任取3個,求其中“好數(shù)據(jù)”的個數(shù)
的分布列和數(shù)學(xué)期望.
參考公式:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知離心率為
的橢圓
經(jīng)過拋物線
的焦點
,斜率為1的直線
經(jīng)過
且與橢圓交于
兩點.
(1)求
面積;
(2)動直線
與橢圓有且僅有一個交點,且與直線
分別交于
兩點,
為橢圓的右焦點,證明
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(其中
為參數(shù)),以原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)若
,求直線
與曲線
的交點的直角坐標(biāo);
(2)若點
在曲線
上,且
到直線
距離的最大值為
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在市中心有一矩形空地
.市政府欲將它改造成綠化景觀帶,具體方案如下:在邊
上分別取點M,N,在三角形
內(nèi)建造假山,在以
為直徑的半圓內(nèi)建造噴泉,其余區(qū)域栽種各種觀賞類植物.
![]()
(1)若假山區(qū)域面積為
,求噴泉區(qū)域面積的最小值;
(2)若
,求假山區(qū)域面積的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com