欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-1(x≥0)}\\{\frac{1}{x}(x<0)}\end{array}\right.$,若f(f(a))=-$\frac{1}{2}$,則實數(shù)a=-$\frac{1}{2}$或4.

分析 由f(f(a))=-$\frac{1}{2}$代入分段函數(shù)得$\frac{1}{f(a)}$=-$\frac{1}{2}$或$\frac{1}{2}$f(a)-1=-$\frac{1}{2}$,從而解得f(a)=-2或f(a)=1;再代入求解即可.

解答 解:∵f(f(a))=-$\frac{1}{2}$,
∴$\frac{1}{f(a)}$=-$\frac{1}{2}$或$\frac{1}{2}$f(a)-1=-$\frac{1}{2}$,
∴f(a)=-2或f(a)=1;
∴$\frac{1}{a}$=-2或$\frac{1}{2}$a-1=-2或$\frac{1}{a}$=1或$\frac{1}{2}$a-1=1,
∴a=-$\frac{1}{2}$或a=-2(舍去)或a=1(舍去)或a=4;
故答案為:-$\frac{1}{2}$,4.

點評 本題考查了分段函數(shù)與復(fù)合函數(shù)的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知參數(shù)方程為$\left\{\begin{array}{l}x={x_0}+tcosθ\\ y=tsinθ\end{array}\right.$(t為參數(shù))的直線l經(jīng)過橢圓$\frac{x^2}{3}+{y^2}=1$的左焦點F1,且交y軸正半軸于點C,與橢圓交于兩點A、B(點A位于點C上方).
(I)求點C對應(yīng)的參數(shù)tC(用θ表示);
(Ⅱ)若|F1B|=|AC|,求直線l的傾斜角θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且sinA=$\frac{\sqrt{10}}{10}$,sinB=$\frac{\sqrt{5}}{5}$,C為鈍角.
(Ⅰ)求A+B的值;
(Ⅱ)若bc=$\sqrt{10}$,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知P是△ABC內(nèi)一點,$\overrightarrow{PB}$+$\overrightarrow{PC}$+4$\overrightarrow{PA}$=$\overrightarrow{0}$,現(xiàn)將一粒黃豆撒在△ABC內(nèi),則黃豆落在△PBC內(nèi)的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合U={x∈N*|x≤6},S={1,4,5},T={2,3,4},則S∩(∁UT)=( 。
A.{1,4,5,6}B.{1,5}C.{1,4}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.運行如圖程序框圖,則當輸出y的值最大時,輸入的x值等于( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,角A、B、C所對的邊分別是a、b、c.若∠C=$\frac{2}{3}$π,a、b、c依次成等差數(shù)列,且公差為2,如圖.A′B′分別在射線CA,CB上運動,且滿足A′B′=AB,設(shè)∠A′B′C′=θ,則△A′CB′周長最大值為7+$\frac{14\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x軸上的點P與點(-1,3)的距離為5,則點P的坐標為(3,0)或(-5,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列說法正確的是( 。
A.“a2>9”是“a>3”的充分不必要條件
B.“?x0∈R,使得$sin{x_0}+\frac{2}{{sin{x_0}}}>2\sqrt{2}$”的否定是“$?x∈R,sinx+\frac{2}{sinx}<2\sqrt{2}$”
C.若A∧B是假命題,則A∨B是假命題
D.“若a<0,則x2+ax+a<0有解”的否命題為“若a≥0,則x2+ax+a<0無解”

查看答案和解析>>

同步練習(xí)冊答案