欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.若函數(shù)f(x)的導(dǎo)數(shù)f′(x)存在導(dǎo)數(shù),記f′(x)的導(dǎo)數(shù)為fn(x).如果f(x)對任意x∈(a,b),都有fn(x)<0成立,則f(x)有如下性質(zhì):
f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$)≥$\frac{f({x}_{1})+f({x}_{2})+…+f({x}_{n})}{n}$.其中n∈N*,x1,x2,…,xn∈(a,b).若f(x)=sinx,則fn(x)=-sinx;根據(jù)上述性質(zhì)推斷:當(dāng)x1+x2+x3=π且x1,x2,x3∈(0,π)時(shí),根據(jù)上述性質(zhì)推斷:sinx1+sinx2+sinx3的最大值為$\frac{2\sqrt{3}}{3}$.

分析 構(gòu)造函數(shù)f(x)=sinx,x∈(0,π),求導(dǎo),則f″(x)=-sinx,由正弦函數(shù)的圖象可知f″(x)<0成立,根據(jù)函數(shù)的性質(zhì)sinx1+sinx2+sinx3≤3sin($\frac{{x}_{1}+{x}_{2}+{x}_{3}}{3}$),即可求得sinx1+sinx2+sinx3的最大值.

解答 解:設(shè)f(x)=sinx,x∈(0,π),則f′(x)=cosx,則f″(x)=-sinx,x∈(0,π),
f(x)有如下性質(zhì):f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$)≥$\frac{f({x}_{1})+f({x}_{2})+…+f({x}_{n})}{n}$.
則sinx1+sinx2+sinx3≤3sin($\frac{{x}_{1}+{x}_{2}+{x}_{3}}{3}$)=3×sin$\frac{π}{3}$=$\frac{2\sqrt{3}}{3}$,
∴sinA+sinB+sinC的最大值為$\frac{2\sqrt{3}}{3}$,
故答案為:-sinx,$\frac{2\sqrt{3}}{3}$

點(diǎn)評 本題考查函數(shù)的性質(zhì),考查正弦函數(shù)的性質(zhì),考查轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,對任意的n∈N+,都有Sn=2-an,數(shù)列{bn}滿足b1=2a1,bn=$\frac{_{n-1}}{1+_{n-1}}$(n≥2,n∈N+).
(1)求證:數(shù)列{an}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的通項(xiàng)公式
(3)求數(shù)列{$\frac{1}{{a}_{n+2}_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知甲船在燈塔北偏東80°處,且與燈塔相距2km,乙船在燈塔北偏西40°處,兩船相距3km,那么乙船與燈塔的距離為$\sqrt{6}$-1km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖所示是一個(gè)算法的程序框圖,最后輸出k的值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.方程cosπx=$\frac{1}{4}$x的解的個(gè)數(shù)是( 。
A.4B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某共享單車公司欲在某社區(qū)投放一批共享單車,單車總數(shù)不超過100輛,現(xiàn)有A,B兩種型號的單車:其中A型為運(yùn)動(dòng)型,成本為500元/車,騎行半小時(shí)需花費(fèi)0.5元;B型車為輕便型,成本為3000元/車,騎行半小時(shí)需花費(fèi)1元.若公司投入成本資金不能超過10萬元,且投入的車輛平均每車每天會(huì)被騎行2次,每次不超過半小時(shí)(不足半小時(shí)按半小時(shí)計(jì)算),則在該社區(qū)單車公司可獲得的總收入最多為120元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F.直線l:2x-y=0交橢圓E于A,B兩點(diǎn).若|AF|+|BF|=6,點(diǎn)F到直線l的距離不小于2,則橢圓E的離心率的取值范圍是( 。
A.(0,$\frac{\sqrt{5}}{3}$]B.[$\frac{\sqrt{5}}{3}$,1)C.[$\frac{1}{2}$,1)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,已知該幾何體的各個(gè)面中有n個(gè)面是矩形,體積為V,則( 。
A.n=4,V=10B.n=5,V=12C.n=4,V=12D.n=5,V=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知a=2,A=$\frac{π}{3}$.
(1)當(dāng)$\frac{\sqrt{3}}{2}$-sin(B-C)=sin2B時(shí),求△ABC的面積;
(2)求△ABC周長的最大值.

查看答案和解析>>

同步練習(xí)冊答案