【題目】“開門大吉”是某電視臺(tái)推出的游戲節(jié)目,選手面對(duì)1
號(hào)8扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對(duì)應(yīng)的家庭夢想基金,在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個(gè)年齡段:
;
(單位:歲),其猜對(duì)歌曲名稱與否的人數(shù)如圖所示.
![]()
(Ⅰ)寫出
列聯(lián)表;判斷是否有
的把握認(rèn)為猜對(duì)歌曲名稱是否與年齡有關(guān);說明你的理由;(如表的臨界值表供參考)
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
(Ⅱ)現(xiàn)計(jì)劃在這次場外調(diào)查中按年齡段用分層抽樣的方法選取6名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中恰好有一人在
歲之間的概率.
(參考公式:
,其中
)
【答案】(Ⅰ)見解析;(Ⅱ)
.
【解析】試題分析:(Ⅰ)根據(jù)頻率分布表寫出
列聯(lián)表,代入公式計(jì)算即可.
(Ⅱ)根據(jù)古典概型計(jì)算公式求解即可.
試題解析:(Ⅰ)
年齡 | 正確 | 錯(cuò)誤 | 合計(jì) |
| 10 | 30 | 40 |
| 10 | 70 | 80 |
合計(jì) | 20 | 100 | 120 |
由上表可知
,有
的把握認(rèn)為猜對(duì)歌曲名稱與年齡有關(guān).
(Ⅱ)設(shè)事件
為三名幸運(yùn)選手中恰好有一人在
歲之間,由已知得
歲之間的人數(shù)為2人,
歲之間的人數(shù)為4人,從6人中取3人的結(jié)果有20種,事件
的結(jié)果是
種,故3名幸運(yùn)選手中恰好一人在
歲之間的概率是
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
是
的導(dǎo)函數(shù).
(1)求
的極值;
(2)證明:對(duì)任意實(shí)數(shù)
,都有
恒成立;
(3)若
在
時(shí)恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務(wù).該地區(qū)某高級(jí)中學(xué)一興趣小組由20名高二級(jí)學(xué)生和15名高一級(jí)學(xué)生組成,現(xiàn)采用分層抽樣的方法抽取7人,組成一個(gè)體驗(yàn)小組去市場體驗(yàn)“共享單車”的使用.問:
(Ⅰ)應(yīng)從該興趣小組中抽取高一級(jí)和高二級(jí)的學(xué)生各多少人;
(Ⅱ)已知該地區(qū)有
,
兩種型號(hào)的“共享單車”,在市場體驗(yàn)中,該體驗(yàn)小組的高二級(jí)學(xué)生都租
型車,高一級(jí)學(xué)生都租
型車.
(1)如果從組內(nèi)隨機(jī)抽取3人,求抽取的3人中至少有2人在市場體驗(yàn)過程中租
型車的概率;
(2)已知該地區(qū)
型車每小時(shí)的租金為1元,
型車每小時(shí)的租金為1.2元,設(shè)
為從體驗(yàn)小組內(nèi)隨機(jī)抽取3人得到的每小時(shí)租金之和,求
的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣6x+8<0},B={x|(x﹣a)(x﹣3a)<0}.
(1)若a=1,求A∩B;
(2)若A∩B=,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的通項(xiàng)公式是
.
(1)判斷
是否是數(shù)列
中的項(xiàng);
(2)試判斷數(shù)列
中的各項(xiàng)是否都在區(qū)間
內(nèi);
(3)試判斷在區(qū)間
內(nèi)是否有無窮數(shù)列
中的項(xiàng)?若有,是第幾項(xiàng)?若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=loga(2x2+x)(a>0,a≠1)在區(qū)間(0,
)內(nèi)恒有f(x)>0,則f(x)的單調(diào)遞增區(qū)間是( )
A.(﹣∞,﹣
)
B.![]()
C.![]()
D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A={x|2x2﹣7x+3≤0},B={x||x|<a}
(1)當(dāng)a=2時(shí),求A∩B,A∪B;
(2)若(RA)∩B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)=(m﹣1)x2+2mx+3為偶函數(shù),則f(x)在區(qū)間(2,5)上是( )
A.減函數(shù)
B.增函數(shù)
C.有增有減
D.增減性不確定
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com