| A. | (1,$\frac{5}{2}$] | B. | (-∞,$\frac{1}{2}$]∪(1,$\frac{5}{2}$] | C. | [$\frac{1}{2}$,$\frac{5}{2}$) | D. | [$\frac{1}{2}$,1)∪[$\frac{5}{2}$,+∞) |
分析 當p為真命題時,根據(jù)對數(shù)型函數(shù)單調(diào)性的規(guī)律得到0<a<1;根據(jù)一元二次方程根的判別式,得到當q為真命題時,0<a<$\frac{1}{2}$或a>$\frac{5}{2}$,因為“P∨Q”為假,說明命題p、q都為假,可得a的取值范圍.
解答 解:先看命題p:
∵函數(shù)y=loga(x+1)在(0,+∞)內(nèi)單調(diào)遞減,a>0,a≠1,
∴命題P為真時?0<a<1,
再看命題q:
當命題q為真時,二次函數(shù)對應(yīng)的一元二次方程根的判別式滿足:
△=(2a-3)2-4>0⇒0<a<$\frac{1}{2}$或a>$\frac{5}{2}$,
由“p∨q”為假,知p、q都為假,
∴$\left\{\begin{array}{l}{a>1}\\{\frac{1}{2}≤a≤\frac{5}{2}}\end{array}\right.$,解得:1<a≤$\frac{5}{2}$
故選:A.
點評 本題以函數(shù)的單調(diào)性和二次函數(shù)零點的問題為載體,考查了命題真假的判斷與應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | -$\sqrt{2}$ | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | a+b≥2$\sqrt{ab}$ | B. | a2+b2>2ab | C. | $\frac{a}$+$\frac{a}$≥2 | D. | |${\frac{a}$+$\frac{a}}$|≥2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com