②③④
分析:①由題意得對任意x∈R,f(x+2)=f(x),所以f(x)是周期函數(shù),且周期是2.所以f(1)=f(1-2)=f(-1),即f(-1)=f(1).
②由①得f(x)是周期函數(shù),且周期是2.故②正確.
③由題意得f(0)=0.因?yàn)椋▁)是周期函數(shù),且周期是2,所以f(x)=0的全部解為x=2k.
④當(dāng)x∈[-1,1)時(shí),解方程f(x)=

得x=-1或x=1(舍去).同理根據(jù)函數(shù)的周期求出函數(shù)在[1,3)與[-3,-1)時(shí)的解析式列方程求解可得答案.
解答:①因?yàn)閷θ我鈞∈R,f(x+2)-f(x)=0,所以對任意x∈R,f(x+2)=f(x),所以f(x)是周期函數(shù),且周期是2.
所以f(1)=f(1-2)=f(-1),即f(-1)=f(1),
所以函數(shù)f(x)不是奇函數(shù).故①錯(cuò)誤.
②由①得f(x)是周期函數(shù),且周期是2.故②正確.
③因?yàn)楫?dāng)x∈[-1,1)時(shí),f(x)=x,所以f(0)=0.又因?yàn)椋▁)是周期函數(shù),且周期是2,所以函數(shù)f(x)的全部零點(diǎn)為x=2k.故③正確.
④x∈[-1,1)時(shí),f(x)=x,令f(x)=

解得x=-1或x=1(舍去).當(dāng)x∈[1,3)時(shí)f(x)=x-2=

解得x=

(舍去).當(dāng)x∈[-3,-1)時(shí),f(x)=x+2=

解得x=-1-

或x=-1+

(舍去).故④正確.
故答案為②③④.
點(diǎn)評:解決此類題目的關(guān)鍵是對于分段函數(shù)的奇偶性,周期性,單調(diào)性等性質(zhì)要熟練掌握,在高考中也是重點(diǎn)考查的范圍之一.