【題目】求下列方程組的解集:
(1)
;(2)
;(3)
;(4)
.
【答案】(1)
;(2)
;(3)
;(4)
.
【解析】
(1)利用加減消元法可求出原方程組的解集;
(2)利用完全平方公式求出
和
的值,然后聯(lián)立方程組,可求出原方程組的解集;
(3)將兩式相減可得出
,可得
,代入
,利用代入消元法可求出原方程組的解集;
(4)由
可得
或
,由此可得出兩個方程組
和
,利用代入消元法解出這兩個方程組,解出即得原方程組的解集.
(1)
,
①
②得
,即
,解得
或
.
①
②得
,即
,解得
或
.
因此,原方程組的解集為
;
(2)
,
①
②
,得
,即
,所以
或
,
①
②
,得
,即
,所以
或
.
所以
或
或
或
,
解得
或
或
或
,
因此,原方程組的解集為
;
(3)
,
①
②得
,即
,可得
,③,
將③代入①得
,整理得
,解得
或
.
當
時,
;當
時,
.
因此,原方程組的解集為
;
(4)
,
由②得
,所以
或
,
所以原方程組化為
或
.
先解方程組
,由
得
,代入
得
,解得
或
.
當
時,
;當
時,
;
然后解方程組
,由
,得
,代入
得
,解得
或
.
當
時,
;當
時,
.
因此,原方程組的解集為
.
科目:高中數(shù)學 來源: 題型:
【題目】把
個相同的小球放到三個編號為
的盒子中,且每個盒子內的小球數(shù)要多于盒子的編號數(shù),則共有多少種放法( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中
中,曲線
的參數(shù)方程為
為參數(shù),
). 以坐標原點為極點,
軸正半軸為極軸建立極坐標系,已知直線
的極坐標方程為
.
(1)設
是曲線
上的一個動點,當
時,求點
到直線
的距離的最大值;
(2)若曲線
上所有的點均在直線
的右下方,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2016·貴陽第二次聯(lián)考)在△ABC中,角A,B,C的對邊分別為a,b,c,向量m=(a+b,sin A-sin C),向量n=(c,sin A-sin B),且m∥n.
(1)求角B的大;
(2)設BC的中點為D,且AD=
,求a+2c的最大值及此時△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某面包店隨機收集了面包種類的有關數(shù)據(jù),經(jīng)分類整理得到下表:
面包類型 | 第一類 | 第二類 | 第三類 | 第四類 | 第五類 | 第六類 |
面包個數(shù) | 90 | 60 | 30 | 80 | 100 | 40 |
好評率 | 0.6 | 0.45 | 0.7 | 0.35 | 0.6 | 0.5 |
好評率是指:一類面包中獲得好評的個數(shù)與該類面包的個數(shù)的比值.
(1)從面包店收集的面包中隨機選取1個,求這個面包是獲得好評的第五類面包的概率;
(2)從面包店收集的面包中隨機選取1個,估計這個面包沒有獲得好評的概率;
(3)面包店為增加利潤,擬改變生產(chǎn)策略,這將導致不同類型面包的好評率發(fā)生變化.假設表格中只有兩類面包的好評率數(shù)據(jù)發(fā)生變化,那么哪類面包的好評率增加0.1,哪類面包的好評率減少0.1,使得獲得好評的面包總數(shù)與樣本中的面包總數(shù)的比值達到最大?(只需寫出結論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的兩個焦點是
,
,且橢圓
經(jīng)過點
.
(1)求橢圓
的標準方程;
(2)若過左焦點
且傾斜角為45°的直線
與橢圓
交于
兩點,求線段
的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于圓柱的底面圓O,AB是圓O的直徑,AB=2,BC=1,DC、EB是兩條母線,且tan∠EAB=
.
(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點M,使得MO∥平面ADE,證明你的結論.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com