如圖,橢圓
的右焦點
與拋物線
的焦點重合,過
作與
軸垂直的直線與橢圓交于
,而與拋物線交于
兩點,且
.![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過
的直線與橢圓
相交于兩點
和
,
設(shè)
為橢圓
上一點,且滿足
(
為坐標(biāo)原點),求實數(shù)
的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
,
)的圖象恒過定點
,橢圓
:
(
)的左,右焦點分別為
,
,直線
經(jīng)過點
且與⊙
:
相切.
(1)求直線
的方程;
(2)若直線
經(jīng)過點
并與橢圓
在
軸上方的交點為
,且
,求
內(nèi)切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系
和極坐標(biāo)系
的原點與極點重合,
軸的正半軸與極軸重合,單位長度相同。已知曲線
的極坐標(biāo)方程為
,曲線
的參數(shù)方程為![]()
,射線
,
,
與曲線
交于極點
以外的三點A,B,C.
(1)求證:
;
(2)當(dāng)
時,B,C兩點在曲線
上,求
與
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓C:
+
=1(a>b>0)的左、右焦點分別為F
、F
,A是橢圓C上的一點,AF
⊥F
F
,O是坐標(biāo)原點,OB垂直AF
于B,且OF
=3OB.![]()
(Ⅰ)求橢圓C的離心率;
(Ⅱ)求t∈(0,b),使得命題“設(shè)圓x
+y
=t
上任意點M(x
,y
)處的切線交橢圓C于Q
、Q
兩點,那么OQ
⊥OQ
”成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,![]()
軸被拋物線
截得的線段長等于
的長半軸長.
(1)求
的方程;
(2)設(shè)
與
軸的交點為
,過坐標(biāo)原點
的直線![]()
與
相交于
兩點,直線
分別與
相交于
.
①證明:
為定值;
②記
的面積為
,試把
表示成
的函數(shù),并求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線
,點
、
分別為雙曲線
的左、右焦點,動點
在
軸上方.
(1)若點
的坐標(biāo)為
是雙曲線的一條漸近線上的點,求以
、
為焦點且經(jīng)過點
的橢圓的方程;
(2)若∠
,求△
的外接圓的方程;
(3)若在給定直線
上任取一點
,從點
向(2)中圓引一條切線,切點為
. 問是否存在一個定點
,恒有
?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在坐標(biāo)原點,兩個焦點分別為
,![]()
,點
在橢圓
上,過點
的直線
與拋物線
交于
兩點,拋物線
在點
處的切線分別為
,且
與
交于點
.
(1) 求橢圓
的方程;
(2) 是否存在滿足
的點
? 若存在,指出這樣的點
有幾個(不必求出點
的坐標(biāo)); 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的方程為
左、右焦點分別為F1、F2,焦距為4,點M是橢圓C上一點,滿足![]()
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點P(0,2)分別作直線PA,PB交橢圓C于A,B兩點,設(shè)直線PA,PB的斜率分別為k1,k2,
,求證:直線AB過定點,并求出直線AB的斜率k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓O:
,直線l:
與橢圓C:
相交于P、Q兩點,O為原點.
(Ⅰ)若直線l過橢圓C的左焦點,且與圓O交于A、B兩點,且
,求直線l的方程;
(Ⅱ)如圖,若
重心恰好在圓上,求m的取值范圍.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com