分析 當(dāng)x≠0時,f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$=$\frac{1}{\sqrt{{x}^{2}+\frac{4}{{x}^{2}}+5}}$,結(jié)合基本不等式,可得函數(shù)的最大值.
解答 解:當(dāng)x=0時,f(0)=0,
當(dāng)x≠0時,f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$=$\frac{1}{\sqrt{{x}^{2}+\frac{4}{{x}^{2}}+5}}$≤$\frac{1}{\sqrt{2\sqrt{{x}^{2}•\frac{4}{{x}^{2}}}+5}}$=$\frac{1}{3}$,
故函數(shù)f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$的最大值為$\frac{1}{3}$,
故答案為:$\frac{1}{3}$
點評 本題考查的知識點是函數(shù)的最值及其幾何意義,基本不等式的應(yīng)用,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 制作模型數(shù)x(個) | 10 | 20 | 30 | 40 | 50 |
| 花費時間y(分鐘) | 64 | 69 | 75 | 82 | 90 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 12 | B. | $\frac{164}{3}$ | C. | 55 | D. | $\frac{170}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com