欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)M坐標(biāo)為(2,1),若點(diǎn)N(x、y)滿足不等式組$\left\{\begin{array}{l}{x-4y+3≤0}\\{2x+y-12≤0}\\{x≥1}\end{array}\right.$,則使$\overrightarrow{OM}$•$\overrightarrow{ON}$取得取大值的點(diǎn)N的個數(shù)是無數(shù)個.

分析 根據(jù)約束條件畫出可行域,利用平面向量的數(shù)量積建立目標(biāo)函數(shù),
將目標(biāo)函數(shù)的最大值轉(zhuǎn)化為y軸上的截距最大,求出最優(yōu)解的個數(shù)即可.

解答 解:根據(jù)約束條件$\left\{\begin{array}{l}{x-4y+3≤0}\\{2x+y-12≤0}\\{x≥1}\end{array}\right.$,畫出可行域,如圖所示;
則$\overrightarrow{OM}$•$\overrightarrow{ON}$=(2,1)•(x,y)=2x+y,
設(shè)z=2x+y,
將最大值轉(zhuǎn)化為y軸上的截距最大,
由于直線z=2x+y與可行域邊界:2x+y-12=0平行,
當(dāng)直線z=2x+y經(jīng)過直線2x+y-12=0上所有點(diǎn)時,z最大,
最大為:12.
則使$\overrightarrow{OM}$•$\overrightarrow{ON}$取得最大值時點(diǎn)N的個數(shù)有無數(shù)個.
故答案為:無數(shù)個.

點(diǎn)評 本題考查了平面向量的應(yīng)用問題,也考查了線性規(guī)劃的應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)滿足f(1)=2,f(x+1)=$\frac{1+f(x)}{1-f(x)}$,則f(1)•f(2)…f(2015)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$\overrightarrow{m}$=($\sqrt{3}$sin2x+2,cosx),$\overrightarrow{n}$=(1,2cosx),設(shè)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求f(x)的最小正周期及最值;
(2)在△ABC中,若f(A)=4,b=1,S△ABC=$\frac{\sqrt{3}}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求y=3sinx+4$\sqrt{1+cos2x}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(-1,0),若t$\overrightarrow{a}$+$\overrightarrow$(t∈R)的模在[$\frac{\sqrt{2}}{2}$,1]之間取值時,實(shí)數(shù)t的取值范圍[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{2}$x2+($\frac{3}{4}$a2+$\frac{1}{2}$a)lnx-2ax.
(1)當(dāng)a=-$\frac{1}{2}$時,求f(x)的極值點(diǎn);
(2)若f(x)在f′(x)的單調(diào)區(qū)間上也是單調(diào)的,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知△ABC的三個內(nèi)角A,B,C的對邊分別是a,b,c,∠B=30°,(a-b)(a-2b)<0,則△ABC解的情況是兩解(填:一解、兩解或無解)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}滿足an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$,a1=1,(n∈Nn
(1)求a2,a3,a4的值,并猜想{an}的通項(xiàng)公式(不需要證明);
(2)令bn=anan+1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)已知sinx+cosx=$\frac{1}{5}$,且$\frac{3π}{2}$<x<2π,求:sinx-cosx的值;
(2)求值:$sin{40°}(tan{10°}-\sqrt{3})$.

查看答案和解析>>

同步練習(xí)冊答案