【題目】已知圓
與直線
相切于
,且圓心在直線
上.
(1)求圓
的方程;
(2)已知直線
經(jīng)過原點(diǎn),并且被圓
截得的弦長(zhǎng)為2,求直線
的方程.
【答案】(1)
(2)
或![]()
【解析】
(1)設(shè)出圓心坐標(biāo),根據(jù)題意得出圓心到直線的距離和圓心到點(diǎn)
距離相等,求解出圓心坐標(biāo),進(jìn)而求出圓的方程.
(2)分類討論直線
的斜率存在和不存在兩種情況,利用被圓
截得的弦長(zhǎng)為
,求出直線的斜率,即可求得答案.
(1)圓
的圓心在直線
上,設(shè)所求圓心坐標(biāo)為
,
又因?yàn)閳A
與直線
相切于
,
則由條件可得
,化簡(jiǎn)為
,解得
,所以圓心為
,半徑
,故所求圓的方程為
;
(2)直線
經(jīng)過原點(diǎn),并且被圓
截得的弦長(zhǎng)為2,
①當(dāng)直線
的斜率不存在時(shí),直線
的方程為
,此時(shí)直線
被圓
截得的弦長(zhǎng)為2,滿足條件;
②當(dāng)直線
的斜率存在時(shí),設(shè)直線
的方程為
,
由題意可得
,解得
,所以直線
的方程為
.
綜上所述,則直線
的方程為
或
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形
為平行四邊形,
,
平面
,
,
,
,且
是
的中點(diǎn).
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的大。
(Ⅲ)在線段
上是否存在一點(diǎn)
,使得
與
所成的角為
? 若存在,求出
的長(zhǎng)度;若不存在,請(qǐng)說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為
(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蝴蝶定理因其美妙的構(gòu)圖,像是一只翩翩起舞的蝴蝶,一代代數(shù)學(xué)名家蜂擁而證,正所謂花若芬芳蜂蝶自來.如圖,已知圓
的方程為
,直線
與圓
交于
,
,直線
與圓
交于
,
.原點(diǎn)
在圓
內(nèi).
![]()
(1)求證:
.
(2)設(shè)
交
軸于點(diǎn)
,
交
軸于點(diǎn)
.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列
的前n項(xiàng)和為
,
,
,數(shù)列
滿足:
,
,
,數(shù)列
的前n項(xiàng)和為![]()
(1)求數(shù)列
的通項(xiàng)公式及前n項(xiàng)和;
(2)求數(shù)列
的通項(xiàng)公式及前n項(xiàng)和;
(3)記集合
,若M的子集個(gè)數(shù)為16,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中是真命題的個(gè)數(shù)是( )
(1)垂直于同一條直線的兩條直線互相平行
(2)與同一個(gè)平面夾角相等的兩條直線互相平行
(3)平行于同一個(gè)平面的兩條直線互相平行
(4)兩條直線能確定一個(gè)平面
(5)垂直于同一個(gè)平面的兩個(gè)平面平行
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)設(shè)
,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若曲線
與
在公共點(diǎn)
處有相同的切線,求點(diǎn)
的橫坐標(biāo);
(Ⅲ)設(shè)
,且曲線
與
總存在公切線,求
的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com