欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且滿足sinA+sinB=[cosA-cos(π-B)]•sinC.
(1)試判斷△ABC的形狀,并說明理由;
(2)若a+b+c=1+$\sqrt{2}$,試求△ABC面積的最大值.

分析 (1)由誘導(dǎo)公式、正弦定理和余弦定理化簡已知的式子,化簡后由邊的關(guān)系判斷出三角形的形狀;
(2)由(1)和條件化簡后,由基本不等式化簡求出$\sqrt{ab}$的范圍,表示三角形的面積,即可求出答案.

解答 解:(1)∵sinA+sinB=[cosA-cos(π-B)]•sinC,
∴sinA+sinB=(cosA+cosB)•sinC,
由正弦定理和余弦定理得,
a+b=($\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$+$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$)•c,
化簡得,2a2b+2ab2=ab2+ac2-a3+ba2+bc2-b3
a2b+ab2=ac2-a3+bc2-b3,
(a+b)(a2+b2-c2)=0,
又a+b>0,∴a2+b2-c2=0,即a2+b2=c2,
∴△ABC為直角三角形,且∠C=90°;
(2)∵a+b+c=1+$\sqrt{2}$,a2+b2=c2,
∴1+$\sqrt{2}$=a+b+$\sqrt{{a}^{2}+^{2}}$≥2$\sqrt{ab}$+$\sqrt{2ab}$=(2+$\sqrt{2}$)•$\sqrt{ab}$
當(dāng)且僅當(dāng)a=b時(shí)上式等號成立,則$\sqrt{ab}$≤$\frac{1+\sqrt{2}}{2+\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
∴S△ABC=$\frac{1}{2}$ab≤$\frac{1}{2}$×$(\frac{\sqrt{2}}{2})^{2}$=$\frac{1}{4}$,
即△ABC面積的最大值為$\frac{1}{4}$.

點(diǎn)評 本題考查正弦定理、余弦定理的應(yīng)用:角化邊,以及基本不等式求三角形面積最值中的應(yīng)用,考查轉(zhuǎn)化思想,化簡、變形能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù) f(x)=1+x-$\frac{x^2}{2}$+$\frac{x^3}{3}$,g (x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{x^3}{3}$,設(shè)函數(shù)F(x)=f(x-4)?g(x+3),且函數(shù) F ( x) 的零點(diǎn)均在區(qū)間[a,b]( a<b,a,b∈Z )內(nèi),則 b-a 的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,底面ABCD是直角梯形,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)M為PD的中點(diǎn),點(diǎn)N是為棱CB上一點(diǎn),且$\overrightarrow{BN}=λ\overrightarrow{BC},λ∈({0,1})$.
(Ⅰ)判斷直線MN能否垂直于直線AD,若能,確定N點(diǎn)的位置,若不能,請說明理由;
(Ⅱ)若直線MN⊥BC,求二面角M-AN-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.哈市某公司有五個(gè)不同部門,現(xiàn)有4名在校大學(xué)生來該公司實(shí)習(xí),要求安排到該公司的兩個(gè)部門,且每部門安排兩名,則不同的安排方案種數(shù)為( 。
A.40B.60C.120D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如果兩組數(shù)a1,a2,…an和b1,b2,…bn的平均數(shù)分別是a和b,那么一組數(shù)a1+3b1,a2+3b2,…,an+3bn的平均數(shù)是a+3b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若Sm-1=-4,Sm=0,Sm+2=14(m≥2,且m∈N*
(Ⅰ)求m的值;
(Ⅱ)若數(shù)列{bn}滿足$\frac{{a}_{n}}{2}$=log2bn(n∈N+),求數(shù)列{(an+6)•bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.為了了解一片經(jīng)濟(jì)林的生長情況,隨機(jī)抽測了其中60株樹木的底部周長(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測的60株樹木中,有42株樹木的底部周長小于110cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知?jiǎng)又本l0:ax+by+c-2=0(a>0,c>0)恒過點(diǎn)P(1,m)且Q(4,0)到動直線l0的最大距離為3,則$\frac{1}{2a}$+$\frac{2}{c}$的最小值為( 。
A.$\frac{9}{2}$B.$\frac{9}{4}$C.1D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)變量x,y滿足不等式$\left\{{\begin{array}{l}{x+y-1≤0}\\{2x+y+2≥0}\\{x≤0}\end{array}}\right.$,且目標(biāo)函數(shù)z=ax-by(a>0,b>0)的最小值為$-2\sqrt{3}$,則log2a+log2b的最大值為-2.

查看答案和解析>>

同步練習(xí)冊答案