分析 (1)由0≤f(x)≤1得1≤$\frac{1-x}{1+x}$≤2,解出即可;
(2)假設存在符合條件的m,由方程得出log2m=f(2x)+x=log2$\frac{1-{2}^{x}}{1+{2}^{x}}$+x,即m=$\frac{1-{2}^{x}}{1+{2}^{x}}$+2x.令g(x)=$\frac{1-{2}^{x}}{1+{2}^{x}}$+2x,求出g(x)的值域即為m的取值范圍.
解答 解:∵0≤f(x)≤1,
即 0≤$lo{g}_{2}\frac{1-x}{1+x}$≤1,
∴1≤$\frac{1-x}{1+x}$≤2,
解得:-$\frac{1}{3}$≤x≤0.
(2)f(2x)=log2$\frac{1-{2}^{x}}{1+{2}^{x}}$,
令$\frac{1-{2}^{x}}{1+{2}^{x}}$>0得2x<1,
∴x<0.
假設存在m∈R使關于x的方程f(2x)=-x+log2m有實根,
則log2m=f(2x)+x=log2$\frac{1-{2}^{x}}{1+{2}^{x}}$+x.
令2x=t,則0<t<1,x=log2t.
∴l(xiāng)og2m=log2$\frac{1-t}{1+t}$+log2t=log2$\frac{-{t}^{2}+t}{1+t}$.
∴m=$\frac{-{t}^{2}+t}{1+t}$.
令g(t)=$\frac{-{t}^{2}+t}{1+t}$,則g′(t)=$\frac{-{t}^{2}-2t+1}{(t+1)^{2}}$.
令g′(t)=$\frac{-{t}^{2}-2t+1}{(t+1)^{2}}$=0得t=$\sqrt{2}$-1或t=-$\sqrt{2}$-1(舍).
當0<t<$\sqrt{2}$-1時,g′(t)>0;當$\sqrt{2}$-1<t<1時,g′(t)<0,
∴當t=$\sqrt{2}-1$時,g(t)取得最大值,gmax(t)=g($\sqrt{2}-1$)=3-2$\sqrt{2}$,
當t=0或t=1時,g(t)取得最小值gmin(t)=g(0)=0.
∴m的取值范圍是(0,3-2$\sqrt{2}$].
點評 本題考查了對數函數的單調性應用,方程根的判斷,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | a>1且b≥0 | B. | a>1且b≥1 | C. | 0<a<1且b≤0 | D. | 0<a<1且b≤1 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com