分析 運用放縮法證明,當n>1時,$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,由裂項相消求和即可得證.
解答 證明:an=n2,Cn=$\frac{1}{{n}^{2}}$,
則Tn=c1+c2+…+cn=1+$\frac{1}{4}$+$\frac{1}{9}$+…+$\frac{1}{{n}^{2}}$,
即有Tn≥1,
當n>1時,$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,
Tn<1+1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$=2-$\frac{1}{n}$<2.
則有1≤Tn<2.
點評 本題考查數(shù)列不等式的證明,考查放縮法和裂項相消求和,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (-∞,-1) | B. | (-1,+∞) | C. | (-∞,-$\frac{1}{2}$) | D. | (-$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | [-$\frac{5}{4}$,0) | B. | (0,+∞) | C. | [-$\frac{5}{4}$,0)∪(0,+∞) | D. | [-$\frac{5}{4}$,0)∪[$\frac{5}{4}$,+∞) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com