欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.設(shè)$f(x)={x^5}+ln(x+\sqrt{{x^2}+1})$,則對任意實(shí)數(shù)a,b,“a+b≥0”是“f(a)+f(b)≥0”的((  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 先判定函數(shù)f(x)的奇偶性與單調(diào)性,即可得出.

解答 解:∵$f(x)={x^5}+ln(x+\sqrt{{x^2}+1})$,x∈R.
∴f(-x)+f(x)=(-x)5+$ln(-x+\sqrt{{x}^{2}+1})$+x5+ln$(x+\sqrt{{x}^{2}+1})$=ln(-x2+x2+1)=0,
∴函數(shù)f(x)是R上的奇函數(shù),
又函數(shù)f(x)在R上單調(diào)遞增.
則對任意實(shí)數(shù)a,b,“a+b≥0”?a≥-b?f(a)≥f(-b)=-f(b)?“f(a)+f(b)≥0”.
∴對任意實(shí)數(shù)a,b,“a+b≥0”是“f(a)+f(b)≥0”的充要條件.
故選:C.

點(diǎn)評 本題考查了函數(shù)的奇偶性與單調(diào)性、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)$\frac{2-i}{1+i}$的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),點(diǎn)M(3,$\sqrt{2}$)在此雙曲線上,點(diǎn)F2到直線MF1的距離為$\frac{4\sqrt{6}}{9}$,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點(diǎn),已知$\overrightarrow{AM}=\overrightarrow{c}$、$\overrightarrow{AN}=\overrightarrow2y2cgow$,試用$\overrightarrow{c}$、$\overrightarrowqki2ie2$表示$\overrightarrow{AB}$和$\overrightarrow{AD}$.
(2)在△ABC中,若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$若P,Q,S為線段BC的四等分點(diǎn),試用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AP}+\overline{AQ}+\overrightarrow{AS}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1=(  )
A.x5B.(x-1)5-1C.x5+1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若存在實(shí)數(shù)x0和正實(shí)數(shù)△x,使得函數(shù)f(x)滿足f(x0+△x)=f(x0)+4△x,則稱函數(shù)f(x)為“可翻倍函數(shù)”,則下列四個(gè)函數(shù)
①$f(x)=\sqrt{x}$;  ②f(x)=x2-2x,x∈[0,3];
③f(x)=4sinx; ④f(x)=ex-lnx.
其中為“可翻倍函數(shù)”的有①④(填出所有正確結(jié)論的番號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題“?x0∈R,f(x0)≥2或f(x0)≤1”的否定形式是( 。
A.?x∈R,1<f(x)<2B.?x0∈R,1<f(x0)<2
C.?x∈R,f(x)≥2或f(x)≤1D.?x0∈R,f(x0)≥2或f(x0)>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow$=(-1,1),則|2$\overrightarrow{a}+\overrightarrow$|=( 。
A.$\sqrt{2}$B.$\sqrt{13}$C.5$\sqrt{2}$D.$\sqrt{2}+2\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且滿足asinAsinB+bcos2A=$\sqrt{3}$a,cosB=$\frac{{\sqrt{6}}}{3}$,c=2$\sqrt{6}$
(Ⅰ)求sinA;
(Ⅱ) 求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案