欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.四棱錐P-ABCD中,底面ABCD是正方形,PB⊥BC,PD⊥CD,E點滿足$PE=\frac{1}{3}PD$
(1)求證:PA⊥平面ABCD;
(2)在線段BC上是否存在點F使得PF∥面EAC?若存在,確定F的位置;若不存在,請說明理由.

分析 (1)證明BC⊥PA,CD⊥PA,即可證明:PA⊥平面ABCD;
(2)當F為BC中點時,PF∥面EAC,證明PF∥ES即可.

解答 (1)證明:在正方形ABCD中,AB⊥BC   
又∵PB⊥BC,AB∩PB=B,
∴BC⊥面PAB,∴BC⊥PA
同理CD⊥PA,
∵BC∩CD=C,∴PA⊥面ABCD
(2)解:當F為BC中點時,PF∥面EAC,理由如下:
∵AD∥2FC,∴$\frac{FS}{SD}=\frac{FC}{AD}=\frac{1}{2}$,
又由已知有$\frac{PE}{ED}$=$\frac{1}{2}$,∴PF∥ES
∵PF?面EAC,EC?面EAC,
∴PF∥面EAC.

點評 本題考查線面平行、線面垂直的證明,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.在等比數(shù)列{an}中,已知a1=-1,公比q=2,則該數(shù)列前6項的和S6的值為-63.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2$\sqrt{2}$,PA=2,BC=4$\sqrt{2}$.
(Ⅰ)若E為PB的中點,證明:AE∥平面PCD;
(Ⅱ)求證:AB⊥PC
(Ⅲ)若F為PD的中點,求二面角F-AC-D的平面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在平面直角坐標系xOy中,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,右焦點到直線x=$\frac{a^2}{c}$的距離為1.
(1)求橢圓的標準方程;
(2)若P為橢圓上的一點(點P不在y軸上),過點O作OP的垂線交直線y=$\sqrt{2}$于點Q,求$\frac{1}{{|OP{|^2}}}+\frac{1}{{|OQ{|^2}}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列命題正確的是( 。
A.四條線段順次首尾連接,所得的圖形一定是平面圖形
B.一條直線和兩條平行直線都相交,則三條直線共面
C.兩兩平行的三條直線一定確定三個平面
D.和兩條異面直線都相交的直線一定是異面直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知正項數(shù)列{an}中,a1=1,a2=$\sqrt{3},2{a_n}^2={a_{n+1}}^2+{a_{n-1}}$2(n≥2),則a5=(  )
A.9B.6C.$2\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=sin2x+cos2x如何平移可以得到函數(shù)y=sin2x-cos2x圖象( 。
A.向左平移$\frac{π}{2}$B.向右平移$\frac{π}{2}$C.向左平移$\frac{π}{4}$D.向右平移$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如圖,長方體ABCD-A'B'C'D'被截去一部分,其中EH∥A'D',截去的幾何體是三棱柱,則剩下的幾何體是五棱柱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知實數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{x+y+1≥0}\\{{x^2}+{y^2}≤4}\\{xy≥0}\end{array}}\right.$,則z=2x+y的取值范圍是( 。
A.$[-2,2\sqrt{5}]$B.[-2,0]C.$[-2\sqrt{5},2]$D.$[\frac{{2\sqrt{5}}}{5},1]$

查看答案和解析>>

同步練習冊答案