【題目】已知函數(shù)
.
(1)①若直線
與
的圖象相切, 求實(shí)數(shù)
的值;
②令函數(shù)
,求函數(shù)
在區(qū)間![]()
上的最大值.
(2)已知不等式
對(duì)任意的
恒成立,求實(shí)數(shù)
的取值范圍.
【答案】(1)①
;②當(dāng)
時(shí),
;當(dāng)
時(shí),
;(2)
.
【解析】
(1)①設(shè)出切點(diǎn)(x0,y0),結(jié)合導(dǎo)數(shù)的幾何意義,根據(jù)切點(diǎn)在切線上,列出方程組求解即可;
②首先去掉絕對(duì)值符號(hào),將函數(shù)化成分段函數(shù)的形式,利用導(dǎo)數(shù)研究即可得結(jié)果;
(2)分情況討論,將恒成立問(wèn)題轉(zhuǎn)化為最值來(lái)處理,利用導(dǎo)數(shù)研究其最值,最后求得結(jié)果.
(1)①設(shè)切點(diǎn)(x0,y0),
,
所以
,所以
,
②因?yàn)?/span>
在(0,+∞)上單調(diào)遞增,且g(1)=0.
所以h(x)=f(x)-|g(x)|=
=![]()
當(dāng)0<x<1時(shí),
,
,
當(dāng)x≥1時(shí),
,
,
所以h(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,且h(x)max=h(1)=0.
當(dāng)0<a<1時(shí),h(x)max=h(1)=0;
當(dāng)a≥1時(shí),h(x)max=h(a)=lna-a+
.
(2)令F(x)=2lnx-k(x-
),x∈(1,+∞).
所以
.設(shè)φ(x)=-kx2+2x-k,
①當(dāng)k≤0時(shí),F'(x)>0,所以F(x)在(1,+∞)上單調(diào)遞增,又F(1)=0,
所以不成立;
②當(dāng)k>0時(shí),對(duì)稱軸
,
當(dāng)
時(shí),即k≥1,φ(1)=2-2k≤0,所以在(1,+∞)上,φ(x)<0,
所以F'(x)<0,
又F(1)=0,所以F(x)<0恒成立;
當(dāng)
時(shí),即0<k<1,φ(1)=2-2k>0,所以在(1,+∞)上,由φ(x)=0,x=x0,
所以x∈(1,x0),φ(x)>0,即F'(x)>0;x∈(x0,+∞),φ(x)<0,即F'(x)<0,
所以F(x)max=F(x0)>F(1)=0,所以不滿足F(x)<0恒成立.
綜上可知:k≥1.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
,若曲線
與曲線
關(guān)于直線
對(duì)稱.
(1)求曲線
的直角坐標(biāo)方程;
(2)在以
為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,射線
與
的異于極點(diǎn)的交點(diǎn)為
,與
的異于極點(diǎn)的交點(diǎn)為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的離心率為
,圓
:
與
軸交于點(diǎn)
、
,
為橢圓
上的動(dòng)點(diǎn),
,
面積最大值為
.
(1)求圓
與橢圓
的方程;
(2)圓
的切線
交橢圓于點(diǎn)
、
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】基于移動(dòng)互聯(lián)技術(shù)的共享單車(chē)被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國(guó),帶給人們新的出行體驗(yàn)
某共享單車(chē)運(yùn)營(yíng)公司的市場(chǎng)研究人員為了解公司的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:
月份 |
|
|
|
|
|
|
月份代碼x | 1 | 2 | 3 | 4 | 5 | 6 |
市場(chǎng)占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
請(qǐng)?jiān)诮o出的坐標(biāo)紙中作出散點(diǎn)圖,并用相關(guān)系數(shù)說(shuō)明可用線性回歸模型擬合月度市場(chǎng)占有率y與月份代碼x之間的關(guān)系;
求y關(guān)于x的線性回歸方程,并預(yù)測(cè)該公司2018年2月份的市場(chǎng)占有率;
根據(jù)調(diào)研數(shù)據(jù),公司決定再采購(gòu)一批單車(chē)擴(kuò)大市場(chǎng),現(xiàn)有采購(gòu)成本分別為1000元
輛和800元
輛的A,B兩款車(chē)型報(bào)廢年限各不相同
考慮到公司的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款單車(chē)各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車(chē)使用壽命頻數(shù)表如下:
報(bào)廢年限 車(chē)型 | 1年 | 2年 | 3年 | 4年 | 總計(jì) |
A | 10 | 30 | 40 | 20 | 100 |
B | 15 | 40 | 35 | 10 | 100 |
經(jīng)測(cè)算,平均每輛單車(chē)每年可以為公司帶來(lái)收入500元
不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車(chē)的使用壽命都是整數(shù)年,且用頻率估計(jì)每輛單車(chē)使用壽命的概率,以每輛單車(chē)產(chǎn)生利潤(rùn)的期望值為決策依據(jù)
如果你是該公司的負(fù)責(zé)人,你會(huì)選擇采購(gòu)哪款車(chē)型?
參考數(shù)據(jù):
,
,
.
參考公式:相關(guān)系數(shù)
,
回歸直線方程為
其中:
,
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】連續(xù)投擲2粒大小相同,質(zhì)地均勻的骰子3次,則恰有2次點(diǎn)數(shù)之和不小于10的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)常數(shù)
,函數(shù)
.
(1)令
時(shí),求
的最小值,并比較
的最小值與零的大;
(2)求證:
在
上是增函數(shù);
(3)求證:當(dāng)
時(shí),恒有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
1
若
,求函數(shù)
的單調(diào)區(qū)間;
2
若對(duì)任意的
,
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的最大值為
,其圖像相鄰的兩條對(duì)稱軸之間的距離為
,且
的圖像關(guān)于點(diǎn)
對(duì)稱,則下列結(jié)論正確的是( ).
A.函數(shù)
的圖像關(guān)于直線
對(duì)稱
B.當(dāng)
時(shí),函數(shù)
的最小值為![]()
C.若
,則
的值為![]()
D.要得到函數(shù)
的圖像,只需要將
的圖像向右平移
個(gè)單位
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com