【題目】定義在[-1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[-1,0]時,f(x)=
-
(a∈R).
(1)寫出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
【答案】見解析
【解析】
解 (1)∵f(x)是定義在[-1,1]上的奇函數(shù),
∴f(0)=0,∴a=1,
∴當(dāng)x∈[-1,0]時,f(x)=
-
.
設(shè)x∈[0,1],則-x∈[-1,0],
∴f(-x)=
-
=4x-2x,
∵f(x)是奇函數(shù),∴f(-x)=-f(x),∴f(x)=2x-4x.
∴f(x)在[0,1]上的解析式為f(x)=2x-4x.
(2)f(x)=2x-4x,x∈[0,1],
令t=2x,t∈[1,2],g(t)=t-t2=-![]()
+
,
∴g(t)在[1,2]上是減函數(shù),
∴g(t)max=g(1)=0,即x=0,f(x)max=0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,側(cè)面
底面
,
為正三角形,
,
,點
,
分別為線段
、
的中點,
、
分別為線段
、
上一點,且
,
.
![]()
(1)確定點
的位置,使得
平面
;
(2)試問:直線
上是否存在一點
,使得平面
與平面
所成銳二面角的大小為
,若存在,求
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠在甲、乙兩地的兩個分廠各生產(chǎn)某種機(jī)器12臺和6臺. 現(xiàn)銷售給A地10臺,B地8臺. 已知從甲地調(diào)運1臺至A地、B地的運費分別為400元和800元,從乙地調(diào)運1臺至A地、B地的費用分別為300元和500元.
(1)設(shè)從甲地調(diào)運x臺至A地,求總費用y關(guān)于臺數(shù)x的函數(shù)解析式;
(2)若總運費不超過9 000元,問共有幾種調(diào)運方案;
(3)求出總運費最低的調(diào)運方案及最低的費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的定義域為
,對于任意的
都有
,設(shè)
時,
.
(1)求
;
(2)證明:對于任意的
,
;
(3)當(dāng)
時,若不等式
在
上恒定成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=
,
(1)畫出函數(shù)y=f(x)的圖象;
(2)討論方程|f(x)|=a的解的個數(shù).(只寫明結(jié)果,無需過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
滿足
,
是數(shù)列
的前
項和.
(1)求數(shù)列
的通項公式
;
(2)令
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-x2+2ex+m-1,g(x)=x+
(x>0).
(1)若g(x)=m有實根,求m的取值范圍;
(2)確定m的取值范圍,使得g(x)-f(x)=0有兩個相異實根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
在點
處的切線的斜率為1.
(1)若函數(shù)f(x)的圖象在
上為減函數(shù),求
的取值范圍;
(2)當(dāng)
時,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com