分析 (Ⅰ)由兩角和與差的余弦和二倍角公式及三角函數(shù)恒等式先求出f(x)=cos(2x+$\frac{π}{3}$)+1,由此能求出f(x)的最大值及使f(x)取最大值時(shí)x的集合.
(Ⅱ)由題意,得cos(2A-$\frac{π}{3}$)=$\frac{1}{2}$,從而A=$\frac{π}{3}$,由余弦定理,得1=b2+c2-bc≥bc,由此能求出△ABC的面積的最大值.
解答 解:(Ⅰ)f(x)=cos(2x-$\frac{4π}{3}$)+2cos2x
=(cos2xcos$\frac{4π}{3}$+sinxsin$\frac{4π}{3}$)+(1+cos2x)
=$\frac{1}{2}cos2x$-$\frac{\sqrt{3}}{2}sin2x$+1
=cos(2x+$\frac{π}{3}$)+1.…(3分)
∴f(x)的最大值為2.…(4分)
此時(shí)cos(2x+$\frac{π}{3}$)=1,2x+$\frac{π}{3}$=2kπ,k∈Z,
故x的集合為{x|x=k$π-\frac{π}{6}$,k∈Z}.…(5分)
(Ⅱ)由題意,f(B+C)=cos[2(B+C)+$\frac{π}{3}$]+1=$\frac{3}{2}$,
即cos(2$π-2A+\frac{π}{3}$)=$\frac{1}{2}$,
化簡(jiǎn)得cos(2A-$\frac{π}{3}$)=$\frac{1}{2}$,(7分)
A∈(0,π),∴2A-$\frac{π}{3}$∈(-$\frac{π}{3},\frac{5π}{3}$),只有2A-$\frac{π}{3}=\frac{π}{3}$,∴A=$\frac{π}{3}$…(8分)
在△ABC中,a=1,A=$\frac{π}{3}$,由余弦定理,得${a}^{2}=^{2}+{c}^{2}-2bccos\frac{π}{3}$,
即1=b2+c2-bc≥bc,當(dāng)且僅當(dāng)b=c取等號(hào),…(10分)
∴${S}_{△ABC}=\frac{1}{2}bcsinA=\frac{\sqrt{3}}{4}bc≤\frac{\sqrt{3}}{4}$.
∴△ABC的面積的最大值為$\frac{\sqrt{3}}{4}$.…(12分)
點(diǎn)評(píng) 本題考查三角函數(shù)化簡(jiǎn)求值,考查三角形面積最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意兩角和與差的余弦和二倍角公式及三角函數(shù)恒等式、余弦定理的合理運(yùn)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{52π}{9}$ | B. | 20π | C. | 8π | D. | $\frac{52π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 若a<b,則ac<bc | B. | 若a<b,c<d,則ac<bd | ||
| C. | 若a<b<0,則$\frac{1}{a}$>$\frac{1}$ | D. | 若a<b,則an<bn(n∈N*,n≥2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com