欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.設(shè)變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≤0}\\{y≥0}\end{array}\right.$,則z=-4x+y的最大值為( 。
A.1B.2C.3D.4

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線(xiàn)方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≤0}\\{y≥0}\end{array}\right.$作出可行域如圖,

由z=-4x+y,得y=4x+z,平移直線(xiàn)y=4x,
由圖象可知,當(dāng)直線(xiàn)經(jīng)過(guò)點(diǎn)A(-1,0)時(shí),直線(xiàn)的截距最大,此時(shí)z也最大,
最大值為z=0-(-4)=4.
故選:D.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線(xiàn)性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知實(shí)數(shù)x,y∈{1,2,3,4,5,6},且x+y=7,則y≥$\frac{x}{2}$的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}滿(mǎn)足${2^{a_1}}$•${2^{a_2}}$…${2^{a_n}}$=${2^{\frac{{75n-5{n^2}}}{2}}}$(n∈N*).
(Ⅰ)求an;
(Ⅱ)令Tn=|an+an+1+…+an+5|(n∈N*),求|Tn|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.把函數(shù)f(x)=cos2x+sinxcosx的圖象向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,再把所得圖象每個(gè)點(diǎn)的橫坐標(biāo)擴(kuò)大為原來(lái)的2倍,得到函數(shù)y=g(x)的圖象,則下列關(guān)于函數(shù)g(x)的敘述正確的是(  )
A.g(x)的一條對(duì)稱(chēng)軸方程為x=$\frac{π}{12}$B.g(x)的值域?yàn)閇-$\sqrt{2}$,$\sqrt{2}$]
C.在(0,π)上單調(diào)遞減D.關(guān)于點(diǎn)($\frac{13π}{12}$,$\frac{1}{2}$)對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.復(fù)數(shù)z=$\frac{2i}{1-i}$(其中i是虛數(shù)單位)的共軛復(fù)數(shù)為$\overline{z}$,則|$\overline{z}$|的值為(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.復(fù)數(shù)Z=(sinθ-2cosθ)+(sinθ+2cosθ)i是純虛數(shù),則sinθcosθ的值為(  )
A.-$\frac{5}{2}$B.-$\frac{2}{5}$C.$\frac{2}{5}$D.$±\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.$\int\begin{array}{l}2\\ 1\end{array}$($\frac{1}{x}$-$\frac{1}{x^2}$)dx=ln2-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知數(shù)列{an},其前n項(xiàng)和為Sn,且Sn=n2+6n+1(n∈N*),則|a1|+|a2|+|a3|+|a4|的值為41.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(文)如圖,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC.
(1)求證:AC⊥平面BDEF.
(2)求證:FC∥平面EAD.
(3)設(shè)AD=1,求VE-BCD

查看答案和解析>>

同步練習(xí)冊(cè)答案