分析 (1)對于任意的x,y∈(0,+∞),f(x•y)=f(x)+f(y),令x=y=1,x=y=3,即可求得f(1)、f($\frac{1}{9}$)的值;
(2)當(dāng)x>1時,f(x)<0,確定函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性把函數(shù)值不等式轉(zhuǎn)化為自變量不等式,解不等式即可求得結(jié)果.
解答 解:(1)令x=y=1易得f(1)=0.
f(9)=f(3)+f(3)=-1-1=-2
f(9)+f($\frac{1}{9}$)=f(1)=0,得f($\frac{1}{9}$)=2.
(2)設(shè)0<x1<x2,由條件(1)可得f(x2)-f(x1)=f($\frac{{x}_{2}}{{x}_{1}}$),
因$\frac{{x}_{2}}{{x}_{1}}$>1,所以知f($\frac{{x}_{2}}{{x}_{1}}$)<0,
所以f(x2)<f(x1),
即f(x)在R+上是遞減的函數(shù).
不等式f(2-x)<2可化為f(2-x)<f($\frac{1}{9}$),
所以0<2-x<$\frac{1}{9}$,
所以$\frac{17}{9}$<x<2.
點(diǎn)評 考查利用函數(shù)單調(diào)性的定義探討抽象函數(shù)的單調(diào)性問題,對于解決抽象函數(shù)的一般采用賦值法,求某些點(diǎn)的函數(shù)值和證明不等式等,體現(xiàn)了轉(zhuǎn)化的思想.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com