分析 (1)根據(jù)sin2+cos2θ=1,x=ρcosθ,y=ρsinθ.將參數(shù)方程和極坐標(biāo)方程化成直角坐標(biāo)方程;
(2)由題意可得當(dāng)直線(xiàn)x+y-4=0的平行線(xiàn)與橢圓相切時(shí),|PQ|取得最值.設(shè)與直線(xiàn)x+y-4=0平行的直線(xiàn)方程為x+y+t=0,代入橢圓方程,運(yùn)用判別式為0,求得t,再由平行線(xiàn)的距離公式,可得|PQ|的最小值.
解答 解:(1)參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$消去參數(shù),得
$\frac{{x}^{2}}{3}$+y2=1.
ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$,即為ρ($\frac{\sqrt{2}}{2}$cosθ+$\frac{\sqrt{2}}{2}$sinθ)=2$\sqrt{2}$,化為直角坐標(biāo)方程為x+y-4=0;
(2)由題意可得當(dāng)直線(xiàn)x+y-4=0的平行線(xiàn)與橢圓相切時(shí),
|PQ|取得最值.
設(shè)與直線(xiàn)x+y-4=0平行的直線(xiàn)方程為x+y+t=0,
聯(lián)立$\left\{\begin{array}{l}{x+y+t=0}\\{{x}^{2}+3{y}^{2}=3}\end{array}\right.$
可得4x2+6tx+3t2-3=0,
由直線(xiàn)與橢圓相切,可得△=36t2-16(3t2-3)=0,
解得t=±2,
顯然t=-2時(shí),|PQ|取得最小值,
即有|PQ|=$\frac{|-4-(-2)|}{\sqrt{1+1}}$=$\sqrt{2}$.
點(diǎn)評(píng) 本題考查參數(shù)方程和普通方程的互化、極坐標(biāo)和直角坐標(biāo)的互化,同時(shí)考查直線(xiàn)與橢圓的位置關(guān)系,主要是相切,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $2+\sqrt{3}$ | B. | $-2-\sqrt{3}$ | C. | $2-\sqrt{3}$ | D. | $-2+\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 必要不充分 | B. | 充分不必要 | ||
| C. | 充分必要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3個(gè) | B. | 2個(gè) | C. | 1個(gè) | D. | 0個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | b>c>a | B. | a>b>c | C. | a>c>b | D. | b>a>c |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com