【題目】假設(shè)有一套住房的房?jī)r(jià)從2002年的20萬(wàn)元上漲到2012年的40萬(wàn)元,下表給出了兩種價(jià)格增長(zhǎng)方式,其中
是按直線上升的房?jī)r(jià),
是按指數(shù)增長(zhǎng)的房?jī)r(jià),t是2002年以來(lái)經(jīng)過(guò)的年數(shù).
t | 0 | 5 | 10 | 15 | 20 |
| 20 | 30 | 40 | 50 | 60 |
| 20 |
| 40 |
| 80 |
(1)求函數(shù)
的解析式;
(2)求函數(shù)
的解析式;
(3)完成上表空格中的數(shù)據(jù),并在同一直角坐標(biāo)系中畫(huà)出兩個(gè)函數(shù)的圖象,然后比較兩種價(jià)格增長(zhǎng)方式的差異.
【答案】(1)
(2)
(3)見(jiàn)解析
【解析】
(1) 設(shè)
再代入
與
計(jì)算即可.
(2) 設(shè)
(
,且
),再根據(jù)
計(jì)算即可.
(3)根據(jù)(1)(2)中的函數(shù)解析式畫(huà)出對(duì)應(yīng)的圖像,再根據(jù)圖像辨析即可.
解:(1)設(shè)
,則
,
.
(2)設(shè)
(
,且
),則
.
.
(3)圖象如圖.
![]()
由圖象可以看出,在前10年,按
增長(zhǎng)的價(jià)格始終高于按
增長(zhǎng)的價(jià)格,但10年后,
的價(jià)格增長(zhǎng)速度很快,遠(yuǎn)遠(yuǎn)超出
的價(jià)格并且時(shí)間越長(zhǎng),差別越大.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,以橢圓
的任意三個(gè)頂點(diǎn)為頂點(diǎn)的三角形的面積是
.
(1)求橢圓
的方程;
(2)設(shè)
是橢圓
的右頂點(diǎn),點(diǎn)
在
軸上.若橢圓
上存在點(diǎn)
,使得
,求點(diǎn)
橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,若直線
與曲線
相切;
(1)求曲線
的極坐標(biāo)方程;
(2)在曲線
上取兩點(diǎn)
,
與原點(diǎn)
構(gòu)成
,且滿(mǎn)足
,求面積
的最大值.
【答案】(1)
;(2)![]()
【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線
的直角坐標(biāo)方程為
,
,消去參數(shù)
可知曲線
是圓心為
,半徑為
的圓,由直線
與曲線
相切,可得:
;則曲線C的方程為
, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得
可得曲線C的極坐標(biāo)方程.
(2)由(1)不妨設(shè)M(
),
,(
),
,
,
由此可求
面積的最大值.
試題解析:(1)由題意可知直線
的直角坐標(biāo)方程為
,
曲線
是圓心為
,半徑為
的圓,直線
與曲線
相切,可得:
;可知曲線C的方程為
,
所以曲線C的極坐標(biāo)方程為
,
即
.
(2)由(1)不妨設(shè)M(
),
,(
),
,
![]()
,
當(dāng)
時(shí),
,
所以△MON面積的最大值為
.
【題型】解答題
【結(jié)束】
23
【題目】已知函數(shù)
的定義域?yàn)?/span>
;
(1)求實(shí)數(shù)
的取值范圍;
(2)設(shè)實(shí)數(shù)
為
的最大值,若實(shí)數(shù)
,
,
滿(mǎn)足
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】上饒某購(gòu)物中心在開(kāi)業(yè)之后,為了解消費(fèi)者購(gòu)物金額的分布,在當(dāng)月的電腦消費(fèi)小票中隨機(jī)抽取
張進(jìn)行統(tǒng)計(jì),將結(jié)果分成5組,分別是
,制成如圖所示的頻率分布直方圖(假設(shè)消費(fèi)金額均在
元的區(qū)間內(nèi)).
![]()
(1)若在消費(fèi)金額為
元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再?gòu)闹腥芜x2張,求這2張小票均來(lái)自
元區(qū)間的概率;
(2)為做好五一勞動(dòng)節(jié)期間的商場(chǎng)促銷(xiāo)活動(dòng),策劃人員設(shè)計(jì)了兩種不同的促銷(xiāo)方案:
方案一:全場(chǎng)商品打8.5折;
方案二:全場(chǎng)購(gòu)物滿(mǎn)200元減20元,滿(mǎn)400元減50元,滿(mǎn)600元減80元,滿(mǎn)800元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說(shuō)明理由(直方圖中每個(gè)小組取中間值作為該組數(shù)據(jù)的替代值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是關(guān)于x的方程f(x)﹣g(x)=0的一個(gè)解,求t的值;
(2)當(dāng)0<a<1時(shí),不等式f(x)≥g(x)恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓
的離心率為
,且過(guò)點(diǎn)
.
(1)求橢圓
的方程;
(2)設(shè)
為橢圓
上任一點(diǎn),
為其右焦點(diǎn),點(diǎn)
滿(mǎn)足
.
①證明:
為定值;
②設(shè)直線
與橢圓
有兩個(gè)不同的交點(diǎn)
,與
軸交于點(diǎn)
.若
成等差數(shù)列,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求曲線
在
處的切線方程;
(Ⅱ)若函數(shù)
在定義域內(nèi)不單調(diào),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知2cos(B-C)+1=4cosBcosC.
(Ⅰ)求A;
(Ⅱ)若a=2
,△ABC的面積為2
,求b+c.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com