已知

滿足不等式

設(shè)

,則

的最大值與最小值的差為( )
試題分析:作出不等式組

所表示的區(qū)域,,由圖可知,

在

點取得最小值

,在

點取得最大值

,故

的最大值與最小值的差為

.

練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)x,y滿足約束條件

,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為12,則

的最小值為( )
A. |
B. |
| C.1 |
| D.2 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知點

是平面區(qū)域

內(nèi)的動點,點

,
O為坐標原點,設(shè)

的最小值為

,若

恒成立,則實數(shù)

的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若原點和點

分別在直線

的兩側(cè),則

的取值范圍是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)變量x、y滿足約束條件

,則目標函數(shù)

的最小值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
當變量

滿足約束條件

的最大值為8,則實數(shù)

的值是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)z=2y-2x+4,其中x、y滿足條件

求z的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知x,y滿足

,且目標函數(shù)z=2x+y的最大值是最小值的8倍,則實數(shù)a的值是( )

查看答案和解析>>