【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.
(1)若
的面積
,求a+c值;
(2)若2cosC(
+
)=c2,求角C.
【答案】(1)5(2)![]()
【解析】
(1)由已知利用三角形面積公式可求ac=6,結(jié)合余弦定理可求a+c的值.
(2)利用平面向量數(shù)量積的運(yùn)算,正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)已知等式可求cosC=
,結(jié)合范圍C∈(0,π),可求C的值.
解:(1)∵
的面積
,
∴
=
acsinB=
ac,可得:ac=6,
∵由余弦定理b2=a2+c2-2accosB,可得:7=a2+c2-ac=(a+c)2-3ac=(a+c)2-18,
解得:a+c=5.
(2)∵2cosC(
+
)=c2,
∴2cosC(accosB+bccosA)=c2,可得:2cosC(acosB+bcosA)=c,
∴由正弦定理可得:2cosC(sinAcosB+sinBcosA)=sinC,即2cosCsinC=sinC,
∵sinC≠0,
∴cosC=
,
∵C∈(0,π),
∴C=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,則下列命題中正確命題的個(gè)數(shù)是( )
①函數(shù)
在
上為周期函數(shù)
②函數(shù)
在區(qū)間
,
上單調(diào)遞增
③函數(shù)
在
(
)取到最大值
,且無(wú)最小值
④若方程
(
)有且僅有兩個(gè)不同的實(shí)根,則![]()
A.
個(gè)B.
個(gè)C.
個(gè)D.
個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長(zhǎng)交AB于點(diǎn)G.
![]()
(Ⅰ)證明:G是AB的中點(diǎn);
(Ⅱ)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說(shuō)明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問(wèn)卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是( 。
![]()
A. 回答該問(wèn)卷的總?cè)藬?shù)不可能是100個(gè)
B. 回答該問(wèn)卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多
C. 回答該問(wèn)卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少
D. 回答該問(wèn)卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
在橢圓
上,
為坐標(biāo)原點(diǎn),直線
的斜率與直線
的斜率乘積為
.
(1)求橢圓
的方程;
(2)不經(jīng)過(guò)點(diǎn)
的直線
(
且
)與橢圓
交于
,
兩點(diǎn),
關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為
(與點(diǎn)
不重合),直線
,
與
軸分別交于兩點(diǎn)
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園為了美化環(huán)境和方便顧客,計(jì)劃建造一座圓弧形拱橋,已知該橋的剖面如圖所示,共包括圓弧形橋面
和兩條長(zhǎng)度相等的直線型路面
、
,橋面跨度
的長(zhǎng)不超過(guò)
米,拱橋
所在圓的半徑為
米,圓心
在水面
上,且
和
所在直線與圓
分別在連結(jié)點(diǎn)
和
處相切.設(shè)
,已知直線型橋面每米修建費(fèi)用是
元,弧形橋面每米修建費(fèi)用是
元.
![]()
(1)若橋面(線段
、
和弧
)的修建總費(fèi)用為
元,求
關(guān)于
的函數(shù)關(guān)系式;
(2)當(dāng)
為何值時(shí),橋面修建總費(fèi)用
最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列
滿足
對(duì)任意的
恒成立,
為其前n項(xiàng)的和,且
,
.
(1)求數(shù)列
的通項(xiàng)
;
(2)數(shù)列
滿足
,其中
.
①證明:數(shù)列
為等比數(shù)列;
②求集合![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如下表:
![]()
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:
![]()
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品
”的規(guī)定?
(2)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值
近似滿足
,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的極值;
(2)當(dāng)
時(shí),若
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com