已知二次函數(shù)
的圖象經(jīng)過坐標(biāo)原點,其導(dǎo)函數(shù)為
,數(shù)列
的前
項和為
,點
均在函數(shù)
的圖像上.
(1)求
的解析式;
(2)求數(shù)列
的通項公式;
(3)設(shè)
,
是數(shù)列
的前n項和,求使得
對所有
都成立的最小正整數(shù)
.
(1)
(2)
(3)10
解析試題分析:(1)利用導(dǎo)函數(shù)及待定系數(shù)法求解;(2)利用
與
的關(guān)系
求通項公式,要注意對
進(jìn)行討論;(3)數(shù)列求和的方法由數(shù)列的通項公式?jīng)Q定.常用的方法有:公式求和法、倒序相加法、錯位相減法、裂項相消法、分組轉(zhuǎn)化法等。先利用裂項相消法求和,再求其最大值,就得到
的取值范圍.
試題解析:(1)依題意設(shè)二次函數(shù)
,則
. 1分
由于
,得:
2分
所以
. 3分
(2)由點
均在函數(shù)
的圖像上,又
,
所以
. 4分
當(dāng)
時,
5分
當(dāng)
時,
7分
所以,![]()
8分
(3)由(2)得知
=
9分
=
, 11分
故
=![]()
![]()
=
. 12分
要使![]()
(
)成立,需要滿足
≤
,13分
即
,所以滿足要求的最小正整數(shù)m為10. 14分
考點:1.導(dǎo)數(shù)運算 2.通項公式、前n項和的求法 3.函數(shù)(數(shù)列)最值的求法
科目:高中數(shù)學(xué) 來源: 題型:解答題
2013年我國汽車擁有量已超過2億(目前只有中國和美國超過2億),為了控制汽車尾氣對環(huán)境的污染,國家鼓勵和補(bǔ)貼購買小排量汽車的消費者,同時在部分地區(qū)采取對新車限量上號.某市采取對新車限量上號政策,已知2013年年初汽車擁有量為
(
=100萬輛),第
年(2013年為第1年,2014年為第2年,依次類推)年初的擁有量記為
,該年的增長量
和
與
的乘積成正比,比例系數(shù)為![]()
其中
=200萬.
(1)證明:
;
(2)用
表示
;并說明該市汽車總擁有量是否能控制在200萬輛內(nèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項數(shù)列
的前
項和為
,
是
與
的等比中項.
(1)求證:數(shù)列
是等差數(shù)列;
(2)若
,且
,求數(shù)列
的通項公式;
(3)在(2)的條件下,若
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
中,
,前
和![]()
(Ⅰ)求證:數(shù)列
是等差數(shù)列; (Ⅱ)求數(shù)列
的通項公式;
(Ⅲ)設(shè)數(shù)列
的前
項和為
,是否存在實數(shù)
,使得
對一切正整數(shù)
都成立?若存在,求
的最小值,若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知無窮數(shù)列
中,
、
、
、
構(gòu)成首項為2,公差為-2的等差數(shù)列,
、
、
、
,構(gòu)成首項為
,公比為
的等比數(shù)列,其中
,
.
(1)當(dāng)
,
,時,求數(shù)列
的通項公式;
(2)若對任意的
,都有
成立.
①當(dāng)
時,求
的值;
②記數(shù)列
的前
項和為
.判斷是否存在
,使得
成立?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列
和公比為![]()
的等比數(shù)列
滿足:
,
,
.
(Ⅰ)求數(shù)列
,
的通項公式;
(Ⅱ)若數(shù)列
的前
項和為
,且對任意
均有
成立,試求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列
滿足
.
(1)計算
,
,
,
,由此猜想通項公式
,并用數(shù)學(xué)歸納法證明此猜想;
(2)若數(shù)列
滿足
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定常數(shù)
,定義函數(shù)
,數(shù)列
滿足
.
(1)若
,求
及
;
(2)求證:對任意
,;
(3)是否存在
,使得
成等差數(shù)列?若存在,求出所有這樣的
,若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com