【題目】已知數(shù)列滿足a1=1,an+1=2an+1(n∈N*)
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求{an}的通項(xiàng)公式.
【答案】
(1)證明:由an+1=2an+1得an+1+1=2(an+1),
又an+1≠0,
∴
=2,
即{an+1}為等比數(shù)列
(2)解:由(1)知an+1=(a1+1)qn﹣1,
即an=(a1+1)qn﹣1﹣1=22n﹣1﹣1=2n﹣1
【解析】(1)給等式an+1=2an+1兩邊都加上1,右邊提取2后,變形得到
等于2,所以數(shù)列{an+1}是等比數(shù)列,得證;(2)設(shè)數(shù)列{an+1}的公比為2,根據(jù)首項(xiàng)為a1+1等于2,寫出數(shù)列{an+1}的通項(xiàng)公式,變形后即可得到{an}的通項(xiàng)公式.
【考點(diǎn)精析】本題主要考查了等比數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識點(diǎn),需要掌握通項(xiàng)公式:
才能正確解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 若對任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項(xiàng)和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項(xiàng)a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對任意的等差數(shù)列{an},總存在兩個“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣4x﹣6y+12=0,點(diǎn)A(3,5).
(1)求過點(diǎn)A的圓的切線方程;
(2)O點(diǎn)是坐標(biāo)原點(diǎn),連接OA,OC,求△AOC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓
:
.
(1)若圓
與
軸相切,求圓
的方程;
(2)求圓心
的軌跡方程;
(3)已知
,圓
與
軸相交于兩點(diǎn)
(點(diǎn)
在點(diǎn)
的左側(cè)).過點(diǎn)
任作一條直線與圓
:
相交于兩點(diǎn)
.問:是否存在實(shí)數(shù)
,使得
?若存在,求出實(shí)數(shù)
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題是( )
A.若
與
互為負(fù)向量,則
+
=0
B.若
=0,則
=
或
= ![]()
C.若
,
都是單位向量,則
=1
D.若k為實(shí)數(shù)且k
=
,則k=0或
= ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
有兩個不同的零點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)求當(dāng)
時,
恒成立的
的取值范圍,并證明![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體AC1中,過點(diǎn)A作平面A1BD的垂線,垂足為點(diǎn)H,則以下命題中,錯誤的命題是( ) ![]()
A.點(diǎn)H是△A1BD的垂心
B.AH的延長線經(jīng)過點(diǎn)C1
C.AH垂直平面CB1D1
D.直線AH和BB1所成角為45°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an} 的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn=
,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com