【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線
的普通方程為
,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,以
軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線
、
的極坐標(biāo)方程;
(2)求曲線
與
交點的極坐標(biāo),其中
,
.
【答案】(1)曲線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為![]()
(2)曲線
與
交點的極坐標(biāo)
, ![]()
【解析】試題分析:(1)依題意,將
代入圓方程中可得:
;消參可得故
,再同理可得
;(2)聯(lián)立方程得
,
(舍去)
,
,進(jìn)而求得
與
交點的極坐標(biāo)
,
.
試題解析:(1)依題意,將
代入
中可得:
;
因為
,故
,將
代入上式化簡得:
;
故曲線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
.
(2)將
代入
得
,解得:
,
(舍去),
當(dāng)
時,
,所以
與
交點的平面直角坐標(biāo)為
,
,
∵
,
,
,
,
,
,
∴
,
,故曲線
與
交點的極坐標(biāo)
,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
(
)
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)
時,對于任意
,
,總有
成立,其中
是自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=loga(1+x)+loga(3﹣x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定義域.
(2)求f(x)在區(qū)間[0,
]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3ax+2(a∈R).
(1)當(dāng)a=1時,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式組
表示的平面區(qū)域為D,在區(qū)域D內(nèi)隨機取一個點,則此點到坐標(biāo)原點的距離小于1的概率是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個數(shù)有( )
①函數(shù)f(x)=lg(2x﹣1)的值域為R;
②若(
)a>(
)b , 則a<b;
③已知f(x)=
,則f[f(0)]=1;
④已知f(1)<f(2)<f(3)<…<f(2016),則f(x)在[1,2016]上是增函數(shù).
A.0個
B.1個
C.2 個
D.3個Q
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】加工爆米花時,爆開且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”,在特定條件下,可食用率p與加工時間t(單位:分鐘)滿足函數(shù)關(guān)系p=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三次實驗的數(shù)據(jù),根據(jù)上述函數(shù)模型和實驗數(shù)據(jù),可以得到最佳加工時間為( ) ![]()
A.3.50分鐘
B.3.75分鐘
C.4.00分鐘
D.4.25分鐘
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若變量x,y滿足約束條件
,則z=3x+5y的取值范圍是( 。
A. [3,+∞) B. [﹣8,3] C. (﹣∞,9] D. [﹣8,9]
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com