分析 (I)an+1=$\frac{2(n+1){a}_{n}}{n}$+n+1,可得$\frac{{a}_{n+1}}{n+1}$+1=2$(\frac{{a}_{n}}{n}+1)$,即可證明.數(shù)列{$\frac{{a}_{n}}{n}$+1}是等比教列,公比為2,首項為2.
(II)由(I)可得:$\frac{{a}_{n}}{n}$+1=2n,可得an=n•2n-n.利用錯位相減法、等比數(shù)列的求和公式及其等差數(shù)列的求和公式即可得出.
解答 (I)證明:∵an+1=$\frac{2(n+1){a}_{n}}{n}$+n+1,∴$\frac{{a}_{n+1}}{n+1}$=$2×\frac{{a}_{n}}{n}$+1,
∴$\frac{{a}_{n+1}}{n+1}$+1=2$(\frac{{a}_{n}}{n}+1)$,
∴數(shù)列{$\frac{{a}_{n}}{n}$+1}是等比教列,公比為2,首項為2.
(II)解:由(I)可得:$\frac{{a}_{n}}{n}$+1=2n,可得an=n•2n-n.
設(shè)數(shù)列{n•2n}的前n項和為Tn.
則Tn=2+2×22+3×23+…+n•2n,
2Tn=22+2×23+…+(n-1)•2n+n•2n+1,
相減可得:-Tn=2+22+…+2n-n•2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1,
可得:Tn=(n-1)•2n+1+2.
∴Sn=(n-1)•2n+1+2-$\frac{n(n+1)}{2}$.
點評 本題考查了錯位相減法、等比數(shù)列與等差數(shù)列的通項公式及其求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,1] | B. | [0,1] | C. | $[{0,\frac{e}{2}}]$ | D. | [0,e] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 4 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| x(萬元) | 1 | 2 | 3 | 4 | 5 |
| y(萬元) | 24 | 30 | 38 | 42 | 51 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com