【題目】如圖,在四棱錐
中,
,
,
,且
,
.
![]()
(1)證明:
平面
;
(2)在線段
上,是否存在一點(diǎn)
,使得二面角
的大小為
?如果存在,求
的值;如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)證明 (2)見(jiàn)解析
【解析】
(1)推導(dǎo)出AB⊥AC,AP⊥AC,AB⊥PC,從而AB⊥平面PAC,進(jìn)而PA⊥AB,由此能證明PA⊥平面ABCD;
(2)以A為原點(diǎn),AB為x軸,AC為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出在線段PD上,存在一點(diǎn)M,使得二面角M﹣AC﹣D的大小為60°,
4﹣2
.
(1)∵在底面
中,
,![]()
且![]()
∴
,
∴![]()
又∵
,
,
平面
,
平面![]()
∴
平面
又∵
平面
∴![]()
∵
,
∴![]()
又∵
,
,
平面
,
平面![]()
∴
平面![]()
(2)方法一:在線段
上取點(diǎn)
,使
則![]()
又由(1)得
平面
∴
平面![]()
又∵
平面
∴
作
于![]()
又∵
,
平面
,
平面![]()
∴
平面
又∵
平面
∴![]()
又∵
∴
是二面角
的一個(gè)平面角
設(shè)
則
,![]()
這樣,二面角
的大小為![]()
即
![]()
即![]()
∴滿足要求的點(diǎn)
存在,且![]()
![]()
方法二:取
的中點(diǎn)
,則
、
、
三條直線兩兩垂直
∴可以分別以直線
、
、
為
、
、
軸建立空間直角坐標(biāo)系
且由(1)知
是平面
的一個(gè)法向量
設(shè)
則
,![]()
∴
,![]()
設(shè)
是平面
的一個(gè)法向量
則
∴![]()
令
,則
,它背向二面角
又∵平面
的法向量
,它指向二面角
這樣,二面角
的大小為![]()
即
![]()
即![]()
∴滿足要求的點(diǎn)
存在,且![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓
的左焦點(diǎn)為
,離心率為
,
為圓
的圓心.
(1)求橢圓的方程;
(2)已知過(guò)橢圓右焦點(diǎn)
的直線
交橢圓于
兩點(diǎn),過(guò)
且與
垂直的直線
與圓
交于
兩點(diǎn),求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程
恰有四個(gè)不同的實(shí)數(shù)根,當(dāng)函數(shù)
時(shí),實(shí)數(shù)
的取值范圍是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知偶函數(shù)
滿足
,現(xiàn)給出下列命題:①函數(shù)
是以2為周期的周期函數(shù);②函數(shù)
是以4為周期的周期函數(shù);③函數(shù)
為奇函數(shù);④函數(shù)
為偶函數(shù),則其中真命題的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《數(shù)書(shū)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隅,開(kāi)平方得積.”若把以上這段文字寫(xiě)成公式,即
.已知
滿足
.且
,則用以上給出的公式可求得
的面積為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
,
,
,且PC=BC=2AD=2CD=2
,
.
![]()
(1)
平面
;
(2)已知點(diǎn)
在線段
上,且
,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
的焦點(diǎn)為
,
為拋物線上一點(diǎn),
為坐標(biāo)原點(diǎn).
的外接圓
與拋物線的準(zhǔn)線相切,外接圓
的周長(zhǎng)為
.
(1)求拋物線的方程;
(2)已知不與
軸垂直的動(dòng)直線
與拋物線有且只有一個(gè)公共點(diǎn),且分別交拋物線的準(zhǔn)線和直線
于
、
兩點(diǎn),試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接
年冬奧會(huì),北京市組織中學(xué)生開(kāi)展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核. 記
表示學(xué)生的考核成績(jī),并規(guī)定
為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了
名學(xué)生的考核成績(jī),并作成如下莖葉圖:
5 | 0 | 1 | 1 | 6 | ||||
6 | 0 | 1 | 4 | 3 | 3 | 5 | 8 | |
7 | 2 | 3 | 7 | 6 | 8 | 7 | 1 | 7 |
8 | 1 | 1 | 4 | 5 | 2 | 9 | ||
9 | 0 | 2 | 1 | 3 | 0 |
(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核成績(jī)?yōu)閮?yōu)秀的概率;
(Ⅱ)從圖中考核成績(jī)滿足
的學(xué)生中任取
人,求至少有一人考核優(yōu)秀的概率;
(Ⅲ)記
表示學(xué)生的考核成績(jī)?cè)趨^(qū)間
內(nèi)的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)
時(shí)培訓(xùn)有效. 請(qǐng)你根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動(dòng)是否有效,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地有三家工廠,分別位于矩形ABCD的頂點(diǎn)A,B,及CD的中點(diǎn)P處,已知
km,
,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且A,B與等距離的一點(diǎn)O處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長(zhǎng)為ykm.
(I)按下列要求寫(xiě)出函數(shù)關(guān)系式:
①設(shè)
,將
表示成
的函數(shù)關(guān)系式;
②設(shè)
,將
表示成
的函數(shù)關(guān)系式.
(Ⅱ)請(qǐng)你選用(I)中的一個(gè)函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排水管道總長(zhǎng)度最短.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com