【題目】《最強(qiáng)大腦》是江蘇衛(wèi)視引進(jìn)德國(guó)節(jié)目《SuperBrain》而推出的大型科學(xué)競(jìng)技真人秀節(jié)目.節(jié)目籌備組透露挑選選手的方式:不但要對(duì)空間感知、照相式記憶進(jìn)行考核,而且要讓選手經(jīng)過(guò)名校最權(quán)威的腦力測(cè)試,120分以上才有機(jī)會(huì)入圍.某重點(diǎn)高校準(zhǔn)備調(diào)查腦力測(cè)試成績(jī)是否與性別有關(guān),在該高校隨機(jī)抽取男、女學(xué)生各100名,然后對(duì)這200名學(xué)生進(jìn)行腦力測(cè)試.規(guī)定:分?jǐn)?shù)不小于120分為“入圍學(xué)生”,分?jǐn)?shù)小于120分為“未入圍學(xué)生”.已知男生入圍24人,女生未入圍80人.
(1)根據(jù)題意,填寫下面的
列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有
以上的把握認(rèn)為腦力測(cè)試后是否為“入圍學(xué)生”與性別有關(guān);
性別 | 入圍人數(shù) | 未入圍人數(shù) | 總計(jì) |
男生 | 24 | ||
女生 | 80 | ||
總計(jì) |
(2)用分層抽樣的方法從“入圍學(xué)生”中隨機(jī)抽取11名學(xué)生,然后再?gòu)倪@11名學(xué)生中抽取3名參加某期《最強(qiáng)大腦》,設(shè)抽到的3名學(xué)生中女生的人數(shù)為
,求
的分布列及數(shù)學(xué)期望.
附:
,其中
.
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)填表見(jiàn)解析,沒(méi)有
以上的把握認(rèn)為腦力測(cè)試后是否為“入圍學(xué)生”與性別有關(guān).(2)詳見(jiàn)解析
【解析】
(1)根據(jù)題意填充
列聯(lián)表,再利用獨(dú)立性檢驗(yàn)判斷是否有
以上的把握認(rèn)為腦力測(cè)試后是否為“入圍學(xué)生”與性別有關(guān);(2)先求出
的可能取值為0,1,2,3,再求出對(duì)應(yīng)的概率,即得
的分布列及數(shù)學(xué)期望.
解:(1)填寫列聯(lián)表如下:
性別 | 入圍人數(shù) | 未入圍人數(shù) | 總計(jì) |
男生 | 24 | 76 | 100 |
女生 | 20 | 80 | 100 |
總計(jì) | 44 | 156 | 200 |
因?yàn)?/span>
的觀測(cè)值
,
所以沒(méi)有
以上的把握認(rèn)為腦力測(cè)試后是否為“入圍學(xué)生”與性別有關(guān).
(2)這11名學(xué)生中,被抽到的男生人數(shù)為
,被抽到的女生人數(shù)為
,
的可能取值為0,1,2,3,
,
,
,
.
所以
的分布列為
| 0 | 1 | 2 | 3 |
|
|
|
|
|
故
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(文)(2017·衡水二模)某商場(chǎng)在元旦舉行購(gòu)物抽獎(jiǎng)促銷活動(dòng),規(guī)定顧客從裝有編號(hào)0,1,2,3,4的五個(gè)相同小球的抽獎(jiǎng)箱中一次任意摸出兩個(gè)小球,若取出的兩個(gè)小球的編號(hào)之和等于7則中一等獎(jiǎng),等于6或5則中二等獎(jiǎng),等于4則中三等獎(jiǎng),其余結(jié)果為不中獎(jiǎng).
(1)求中二等獎(jiǎng)的概率.
(2)求不中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰
中,斜邊
,
為直角邊
上的一點(diǎn),將
沿直線
折疊至
的位置,使得點(diǎn)
在平面
外,且點(diǎn)
在平面
上的射影
在線段
上設(shè)
,則
的取值范圍是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
和點(diǎn)
.
(1)過(guò)點(diǎn)
向圓
引切線,求切線的方程;
(2)求以點(diǎn)
為圓心,且被直線
截得的弦長(zhǎng)為8的圓
的方程;
(3)設(shè)
為(2)中圓
上任意一點(diǎn),過(guò)點(diǎn)
向圓
引切線,切點(diǎn)為
,試探究:平面內(nèi)是否存在一定點(diǎn)
,使得
為定值?若存在,請(qǐng)求出定點(diǎn)
的坐標(biāo),并指出相應(yīng)的定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求曲線
在點(diǎn)
處的切線方程;
(2)求
的單調(diào)區(qū)間;
(3)若對(duì)于任意
,都有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2,D為側(cè)棱AA1的中點(diǎn).
![]()
(1)求異面直線DC1,B1C所成角的余弦值;
(2)求二面角B1-DC-C1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐
中,平面
平面
, 底面
為梯形,
,
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)若
是棱
的中點(diǎn),求證:對(duì)于棱
上任意一點(diǎn)
,
與
都不平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校書法興趣組有3名男同學(xué)A,B,C和3名女同學(xué)X,Y,Z,其年級(jí)情況如下表:
一年級(jí) | 二年級(jí) | 三年級(jí) | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加書法比賽
每人被選到的可能性相同
.
用表中字母列舉出所有可能的結(jié)果;
設(shè)M為事件“選出的2人來(lái)自不同年級(jí)且性別相同”,求事件M發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的中心為O,四邊形ODEF為矩形,平面ODEF
平面ABCD,DE=DA=DB=2
(I)若G為DC的中點(diǎn),求證:EG//平面BCF;
(II)若
,求二面角
的余弦值.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com