如圖,直二面角D—AB—E中,四邊形ABCD是邊長為2的正方形,AE=EB,點F在CE上,且
平面ACE。
![]()
(I)求證:
平面BCE;
(II)求二面角B—AC—E的正弦值;
(III)求點D到平面ACE的距離。
![]()
在直角三角形BCE中,CE=![]()
在正方形ABCD中,BG=
,在直角三角形BFG中,
---9分
(III)由(II)可知,在正方形ABCD中,BG=DG,
D到平面ACE的距離等于B到平面ACE的距離,BF⊥平面ACE,
線段BF的長度就是點B到平面ACE的距離,即為D到平面ACE的距離.
故D到平面的距離為
.------------------------------13分
另法:用等體積法亦可。
解法二:(Ⅰ)同解法一. ----------------------------------- 4分
(Ⅱ)以線段AB的中點為原點O,OE所在直線為z軸,AB所在直線為x軸,過O點平行于AD的直線為y軸,建立空間直角坐標系O—xyz,如圖.
面BCE,BE
面BCE,
,
在
的中點,
![]()
![]()
設(shè)平面AEC的一個法向量為
,
則![]()
令
得
是平面AEC的一個法向量.
![]()
又平面BAC的一個法向量為,
![]()
∴二面角B—AC—E的正弦值為
--------------------------------9分
![]()
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
3
| ||
| 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com