欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.函數(shù)y=cos2x,x∈[0,π]的遞增區(qū)間為[$\frac{π}{2}$,π].

分析 先由整體法解2kπ+π≤2x≤2kπ+2π可得函數(shù)的所有單調(diào)遞增區(qū)間,取在x∈[0,π]的即可.

解答 解:由2kπ+π≤2x≤2kπ+2π可解得kπ+$\frac{π}{2}$≤x≤kπ+π,k∈Z,
故函數(shù)y=cos2x的遞增區(qū)間為[kπ+$\frac{π}{2}$,kπ+π],k∈Z,
又∵x∈[0,π],∴函數(shù)的單調(diào)遞增區(qū)間為:[$\frac{π}{2}$,π]
故答案為:[$\frac{π}{2}$,π].

點評 本題考查復合三角函數(shù)的單調(diào)性,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.若隨機變量X~N(2,1),且P(X>3)=0.1587,則P(X<1)=( 。
A.0.8413B.0.6587C.0.1587D.0.3413

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若sinx=$\frac{\sqrt{5}}{5}$,則cos2x=( 。
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{3}{\sqrt{5}}$D.$\frac{3}{\sqrt{5}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an},Sn為其前n項的和,滿足Sn=$\frac{n(n+1)}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{$\frac{1}{a_n}$}的前n項和為Tn,數(shù)列{Tn}的前n項和為Rn,求證:當n≥2,n∈N*時Rn-1=n(Tn-1);
(3)已知當n∈N*,且n≥6時有(1-$\frac{m}{n+3}$)n<($\frac{1}{2}$)m,其中m=1,2,…,n,求滿足3n+4n+…+(n+2)n=(an+3)an的所有n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.對于正實數(shù)α,記Mα是滿足下列條件的函數(shù)f(x)構成的集合:對于任意的實數(shù)x1,x2∈R且x1<x2,都有-α(x2-x1)<f(x2)-f(x1)<α(x2-x1)成立.下列結論中正確的是(  )
A.若f(x)∈Mα1,g(x)∈Mα2,則f(x)•g(x)∈${M_{{α_1}•{α_2}}}$
B.若f(x)∈Mα1,g(x)∈Mα2且g(x)≠0,則$\frac{f(x)}{g(x)}$∈${M_{\frac{α_1}{α_2}}}$
C.若f(x)∈Mα1,g(x)∈Mα2,則f(x)+g(x)∈${M_{{α_1}+{α_2}}}$
D.若f(x)∈Mα1,g(x)∈Mα2且α1>α2,則f(x)-g(x)∈${M_{{α_1}-{α_2}}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知復數(shù)z=$\frac{3+2i}{2-3i}$,則z的共軛復數(shù)$\overline z$=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設f(n)=(a+b)n(n∈N*,n≥2),若f(n)的展開式中,存在某連續(xù)3項,其二項式系數(shù)依次成等差數(shù)列,則稱f(n)具有性質(zhì)P.
(1)求證:f(7)具有性質(zhì)P;
(2)若存在n≤2016,使f(n)具有性質(zhì)P,求n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)y=f(x)滿足f(3+x)=f(1-x)且f(1+x)=f(2-x),求證:y=f(x)是一個周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知直線$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=-1+\frac{1}{2}t}\end{array}\right.$(t為參數(shù))與圓$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$ (θ為參數(shù))相交于A、B兩點,則|AB|的值是$\sqrt{14}$.

查看答案和解析>>

同步練習冊答案