| A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 如圖所示,BD1⊥平面AB1C,平面α過(guò)直線BD,α⊥平面AB1C,可得平面α即為平面DBB1D1.設(shè)AC∩BD=O.可得α∩平面AB1C=m為OB1.同理可得:平面A1C1D即為平面β.又A1D∥B1C,可得m,n所成角為∠OB1C,根據(jù)△AB1C為正三角形,即可得出.
解答 解:如圖所示,![]()
∵BD1⊥平面AB1C,平面α過(guò)直線BD,α⊥平面AB1C,
∴平面α即為平面DBB1D1.設(shè)AC∩BD=O.
∴α∩平面AB1C=m為OB1.
∵平面A1C1D過(guò)直線A1C1,與平面AB1C平行,
而平面β過(guò)直線A1C1,β∥平面AB1C,
∴平面A1C1D即為平面β.
β∩平面ADD1A1=A1D=n,
又A1D∥B1C,
∴m,n所成角為∠OB1C,
由△AB1C為正三角形,則cos∠OB1C=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$.
故選:D.
點(diǎn)評(píng) 本題考查了正方體的性質(zhì)、空間位置關(guān)系、等邊三角形的性質(zhì)、空間角,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{{\sqrt{5}}}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{{\sqrt{2}}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $y=sin({x+\frac{π}{6}})$ | B. | $y=cos({2x-\frac{π}{6}})$ | C. | $y=sin({2x-\frac{π}{6}})$ | D. | $y=cos({4x-\frac{π}{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4 | B. | $\frac{16}{3}$ | C. | $\frac{20}{3}$ | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 6 | B. | 8 | C. | 24 | D. | 36 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com