【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸為正半軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
(t為參數(shù)).
(1)求圓
的直角坐標(biāo)方程;
(2)求直線
分圓
所得的兩弧程度之比.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時,求不等式
的解集;
(2)對任意
,若
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對定義在區(qū)間
上的函數(shù)
和
,如果對任意
,都有
成立,那么稱函數(shù)
在區(qū)間
上可被
替代,
稱為“替代區(qū)間”.給出以下問題:
①
在區(qū)間
上可被
替代;
②
可被
替代的一個“替代區(qū)間”為
;
③
在區(qū)間
可被
替代,則
;
④
(
),
(
),則存在實(shí)數(shù)
(
),使得
在區(qū)間
上被
替代; 其中真命題有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)
,若在定義域內(nèi)存在實(shí)數(shù)
滿足
,則稱
為“局部奇函數(shù)”.
為定義在
上的“局部奇函數(shù)”;
方程
有兩個不等實(shí)根;
若“
”為假命題,“
”為真命題,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是數(shù)列
的前n項(xiàng)和,滿足
,正項(xiàng)等比數(shù)列
的前n項(xiàng)和為
,且滿足
.
(Ⅰ) 求數(shù)列{an}和{bn}的通項(xiàng)公式; (Ⅱ) 記![]()
,求數(shù)列{cn}的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖所示,在三棱錐
中,
底面
,
,
,
,動點(diǎn)D在線段AB 上.
![]()
(1)求證:平面
⊥平面
;
(2)當(dāng)
時,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
,
是函數(shù)
圖象上的任意兩點(diǎn),且角
的終邊經(jīng)過點(diǎn)
,若
時,
的 最小值為
.
(1)求函數(shù)
的解析式;
(2)當(dāng)
時,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b是不同的直線,α,β是不同的平面,則下列四個命題中正確的是________.(填序號)
① 若a⊥b,a⊥α,則b∥α;② 若a∥α,α⊥β,則a⊥β;
③ 若a⊥β,α⊥β,則a∥α;④ 若a⊥b,a⊥α,b⊥β,則α⊥β.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com