設(shè)
分別是橢圓的
左,右焦點。
(Ⅰ)若
是第一象限內(nèi)該橢圓上的一點,且
,求點
的坐標(biāo)。
(Ⅱ)設(shè)過定點
的直線與橢圓交于不同的兩點
,且
為銳角(其中O為坐標(biāo)原點),求直線
的斜率
的取值范圍。
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F(xiàn)2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.![]()
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過B1作直線l交橢圓于P,Q兩點,使PB2⊥QB2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
.
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為
,判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線
,
∥l且
與曲線C的交點A、B滿足
;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓
的中心在原點,其上、下頂點分別為
,點
在直線
上,點
到橢圓的左焦點的距離為
.![]()
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)
是橢圓上異于
的任意一點,點
在
軸上的射影為
,
為
的中點,直線
交直線
于點
,
為
的中點,試探究:
在橢圓上運動時,直線
與圓
:
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的上頂點為
,左焦點為
,直線
與圓
相切.過點
的直線與橢圓
交于
兩點.
(I)求橢圓
的方程;
(II)當(dāng)
的面積達到最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點在坐標(biāo)原點,焦點為
,點
是點
關(guān)于
軸的對稱點,過點
的直線交拋物線于
兩點。
(1)試問在
軸上是否存在不同于點
的一點
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點
的坐標(biāo),若不存在說明理由。
(2)若
的面積為
,求向量
的夾角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線
的漸近線方程為
,左焦點為F,過
的直線為
,原點到直線
的距離是![]()
(1)求雙曲線的方程;
(2)已知直線
交雙曲線于不同的兩點C,D,問是否存在實數(shù)
,使得以CD為直徑的圓經(jīng)過雙曲線的左焦點F。若存在,求出m的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線
的焦點為
,過焦點
且不平行于
軸的動直線
交拋物線于
,
兩點,拋物線在
、
兩點處的切線交于點
.![]()
(Ⅰ)求證:
,
,
三點的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)設(shè)直線
交該拋物線于
,
兩點,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是橢圓的左、右焦點,O為坐標(biāo)原點,點P
在橢圓上,線段
與y軸的交點M滿足![]()
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 圓O是以
為直徑的圓,直線
:
與圓相切,并與橢圓交于不同的兩點
,當(dāng)
,且滿足
時,求直線
的方程。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com